December  2014, 7(4): 605-619. doi: 10.3934/krm.2014.7.605

Time decay of solutions to the compressible Euler equations with damping

1. 

School of Applied Mathematics, Xiamen University of Technology, Xiamen, Fujian 361024, China

2. 

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005

Received  December 2013 Revised  July 2014 Published  November 2014

We consider the time decay rates of the solution to the Cauchy problem for the compressible Euler equations with damping. We prove the optimal decay rates of the solution as well as its higher-order spatial derivatives. The damping effect on the time decay estimates of the solution is studied in details.
Citation: Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic and Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605
References:
[1]

C. M. Dafermos, Can dissipation prevent the breaking of waves? In Transactions of the Twenty-Sixth Conference of Army Mathematicians, ARO Rep. 81, 1, U. S. Army Res. Office, Research Triangle Park, N.C., (1981), 187-198.

[2]

R. J. Duan, H. X. Liu, S. Ukai and T. Yang, Optimal $L^p$-$L^q$ convergence rate for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233. doi: 10.1016/j.jde.2007.03.008.

[3]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rate for the compressible Navier-Stokes equations with potential force, Math. Mod. Meth. Appl. Sci., 17 (2007), 737-758. doi: 10.1142/S021820250700208X.

[4]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. PDE., 37 (2012), 2165-2208. doi: 10.1080/03605302.2012.696296.

[5]

L. Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific Publishing Co., River Edge, NJ, 1997.

[6]

L. Hsiao and T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599-605. doi: 10.1007/BF02099268.

[7]

F. M. Huang and R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359-376. doi: 10.1007/s00205-002-0234-5.

[8]

F. M. Huang, P. Marcati and R. H. Pan, Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping and Vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1-24. doi: 10.1007/s00205-004-0349-y.

[9]

F. M. Huang, R. H. Pan and Z. Wang, $L^1$ convergence to the Barenblatt solution for compressible Euler equations with damping, Arch. Ration. Mech. Anal., 200 (2011), 665-689. doi: 10.1007/s00205-010-0355-1.

[10]

M. Jiang and C. J. Zhu, Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant, J. Differential Equations, 246 (2009), 50-77. doi: 10.1016/j.jde.2008.03.033.

[11]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740.

[12]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations Of Magnetohydrodynamics, Ph.D thesis, Kyoto University, Kyoto, 1983.

[13]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.

[14]

A. Majda, Compressible Fluid Flow and Conservation laws in Several Space Variables, Springer-Verlag, Berlin/New York, 1984. doi: 10.1007/978-1-4612-1116-7.

[15]

P. Marcati and A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J.Differential Equations, 84 (1990), 129-147. doi: 10.1016/0022-0396(90)90130-H.

[16]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J Math Kyoto Univ, 20 (1980), 67-104.

[17]

T. Nishida, Global solutions for an initial-boundary value problem of a quasilinear hyperbolic systems, Proc. Japan Acad., 44 (1968), 642-646. doi: 10.3792/pja/1195521083.

[18]

T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics, Publ. Math. D'Orsay, (1978), 46-53.

[19]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.

[20]

T. C. Sideris, B. Thomases and D. H. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Comm. PDE., 28 (2003), 795-816. doi: 10.1081/PDE-120020497.

[21]

Z. Tan and G. C. Wu, Large time behavior of solutions for compressible Euler equations with damping in $\mathbbR^{3}$, J. Differential Equations, 252 (2012), 1546-1561. doi: 10.1016/j.jde.2011.09.003.

[22]

W. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differential Equations, 173 (2001), 410-450. doi: 10.1006/jdeq.2000.3937.

[23]

C. J. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping, Sci. China Ser. A, 46 (2003), 562-575. doi: 10.1360/03ys9057.

show all references

References:
[1]

C. M. Dafermos, Can dissipation prevent the breaking of waves? In Transactions of the Twenty-Sixth Conference of Army Mathematicians, ARO Rep. 81, 1, U. S. Army Res. Office, Research Triangle Park, N.C., (1981), 187-198.

[2]

R. J. Duan, H. X. Liu, S. Ukai and T. Yang, Optimal $L^p$-$L^q$ convergence rate for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233. doi: 10.1016/j.jde.2007.03.008.

[3]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rate for the compressible Navier-Stokes equations with potential force, Math. Mod. Meth. Appl. Sci., 17 (2007), 737-758. doi: 10.1142/S021820250700208X.

[4]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. PDE., 37 (2012), 2165-2208. doi: 10.1080/03605302.2012.696296.

[5]

L. Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific Publishing Co., River Edge, NJ, 1997.

[6]

L. Hsiao and T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599-605. doi: 10.1007/BF02099268.

[7]

F. M. Huang and R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359-376. doi: 10.1007/s00205-002-0234-5.

[8]

F. M. Huang, P. Marcati and R. H. Pan, Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping and Vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1-24. doi: 10.1007/s00205-004-0349-y.

[9]

F. M. Huang, R. H. Pan and Z. Wang, $L^1$ convergence to the Barenblatt solution for compressible Euler equations with damping, Arch. Ration. Mech. Anal., 200 (2011), 665-689. doi: 10.1007/s00205-010-0355-1.

[10]

M. Jiang and C. J. Zhu, Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant, J. Differential Equations, 246 (2009), 50-77. doi: 10.1016/j.jde.2008.03.033.

[11]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740.

[12]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations Of Magnetohydrodynamics, Ph.D thesis, Kyoto University, Kyoto, 1983.

[13]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.

[14]

A. Majda, Compressible Fluid Flow and Conservation laws in Several Space Variables, Springer-Verlag, Berlin/New York, 1984. doi: 10.1007/978-1-4612-1116-7.

[15]

P. Marcati and A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J.Differential Equations, 84 (1990), 129-147. doi: 10.1016/0022-0396(90)90130-H.

[16]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J Math Kyoto Univ, 20 (1980), 67-104.

[17]

T. Nishida, Global solutions for an initial-boundary value problem of a quasilinear hyperbolic systems, Proc. Japan Acad., 44 (1968), 642-646. doi: 10.3792/pja/1195521083.

[18]

T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics, Publ. Math. D'Orsay, (1978), 46-53.

[19]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.

[20]

T. C. Sideris, B. Thomases and D. H. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Comm. PDE., 28 (2003), 795-816. doi: 10.1081/PDE-120020497.

[21]

Z. Tan and G. C. Wu, Large time behavior of solutions for compressible Euler equations with damping in $\mathbbR^{3}$, J. Differential Equations, 252 (2012), 1546-1561. doi: 10.1016/j.jde.2011.09.003.

[22]

W. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differential Equations, 173 (2001), 410-450. doi: 10.1006/jdeq.2000.3937.

[23]

C. J. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping, Sci. China Ser. A, 46 (2003), 562-575. doi: 10.1360/03ys9057.

[1]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations and Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[2]

Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2949-2967. doi: 10.3934/dcdsb.2020047

[3]

Quentin Chauleur. The isothermal limit for the compressible Euler equations with damping. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022059

[4]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[5]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[6]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4921-4941. doi: 10.3934/dcds.2021062

[7]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[8]

Jean-Paul Chehab, Georges Sadaka. On damping rates of dissipative KdV equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1487-1506. doi: 10.3934/dcdss.2013.6.1487

[9]

Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations and Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009

[10]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[11]

Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021059

[12]

Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425

[13]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations and Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[14]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[15]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[16]

Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic and Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335

[17]

Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361

[18]

Hui Peng, Qilong Zhai. Weak Galerkin method for the Stokes equations with damping. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1853-1875. doi: 10.3934/dcdsb.2021112

[19]

Marcello D'Abbicco, Ruy Coimbra Charão, Cleverson Roberto da Luz. Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2419-2447. doi: 10.3934/dcds.2016.36.2419

[20]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (100)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]