• Previous Article
    Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres
  • KRM Home
  • This Issue
  • Next Article
    Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations
December  2014, 7(4): 739-753. doi: 10.3934/krm.2014.7.739

Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces

1. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

Received  April 2014 Revised  July 2014 Published  November 2014

We study the convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible model with ill-prepared initial data in critical Besov spaces. Under the condition that the initial data is small in some norm, we show that the convergence holds globally as the Mach number goes to zero. Moreover, we also obtain the convergence rate.
Citation: Yanmin Mu. Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces. Kinetic and Related Models, 2014, 7 (4) : 739-753. doi: 10.3934/krm.2014.7.739
References:
[1]

H. Bahouri, J.-Y.Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften 343, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

J.-Y. Chemin, Perfect Incompressible Fluids, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Oxford Lecture Series in Mathematics and its Applications 14, The Clarendon Press, Oxford University Press, New York, 1998.

[3]

R. Danchin, Zero Mach number limit in critial spaces for compressible Navier-Stokes equations, Ann. Sci. Éc. Norm. Supér. (4), 35 (2002), 27-75. doi: 10.1016/S0012-9593(01)01085-0.

[4]

R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions, Amer. J. Math., 124 (2002), 1153-1219. doi: 10.1353/ajm.2002.0036.

[5]

B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2271-2279. doi: 10.1098/rspa.1999.0403.

[6]

B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl., 78 (1999), 461-471. doi: 10.1016/S0021-7824(99)00032-X.

[7]

I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations, J. Math. Kyoto Univ., 40 (2000), 525-540.

[8]

J.-F. Gerbeau, C. Le Bris and L. Claude, Mathematical Methods For The Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2006. doi: 10.1093/acprof:oso/9780198566656.001.0001.

[9]

C. C. Hao, Well-posedness to the compressible viscous magnetohydrddynamic system, Nonlinear Anal. Real World Appl., 12 (2011), 2962-2972. doi: 10.1016/j.nonrwa.2011.04.017.

[10]

L. Hsiao, Q-C. Ju and F.-C. Li, The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data, Chin. Ann. Math. Ser. B, 30 (2009), 17-26. doi: 10.1007/s11401-008-0039-4.

[11]

X-P. Hu and D.-H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal., 41 (2009), 1272-1294. doi: 10.1137/080723983.

[12]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal., 42 (2010), 2539-2553. doi: 10.1137/100785168.

[13]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible Magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400. doi: 10.1007/s00220-010-0992-0.

[14]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed., New York, Pergamon, 1984.

[15]

Y. P. Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations, J. Differential Equations, 252 (2012), 2725-2738. doi: 10.1016/j.jde.2011.10.002.

[16]

N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 199-224. doi: 10.1016/S0294-1449(00)00123-2.

[17]

C. X. Miao and B. Q. Yuan, On the well-posesness of the Cauchy problem for an MHD system in Besov spaces, Math.Meth.Appl.Sci., 32 (2009), 53-76. doi: 10.1002/mma.1026.

[18]

H. Triebel, Theory of Function Spaces, Monographs in Mathematics, 78. Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.

show all references

References:
[1]

H. Bahouri, J.-Y.Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften 343, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[2]

J.-Y. Chemin, Perfect Incompressible Fluids, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Oxford Lecture Series in Mathematics and its Applications 14, The Clarendon Press, Oxford University Press, New York, 1998.

[3]

R. Danchin, Zero Mach number limit in critial spaces for compressible Navier-Stokes equations, Ann. Sci. Éc. Norm. Supér. (4), 35 (2002), 27-75. doi: 10.1016/S0012-9593(01)01085-0.

[4]

R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions, Amer. J. Math., 124 (2002), 1153-1219. doi: 10.1353/ajm.2002.0036.

[5]

B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2271-2279. doi: 10.1098/rspa.1999.0403.

[6]

B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl., 78 (1999), 461-471. doi: 10.1016/S0021-7824(99)00032-X.

[7]

I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations, J. Math. Kyoto Univ., 40 (2000), 525-540.

[8]

J.-F. Gerbeau, C. Le Bris and L. Claude, Mathematical Methods For The Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2006. doi: 10.1093/acprof:oso/9780198566656.001.0001.

[9]

C. C. Hao, Well-posedness to the compressible viscous magnetohydrddynamic system, Nonlinear Anal. Real World Appl., 12 (2011), 2962-2972. doi: 10.1016/j.nonrwa.2011.04.017.

[10]

L. Hsiao, Q-C. Ju and F.-C. Li, The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data, Chin. Ann. Math. Ser. B, 30 (2009), 17-26. doi: 10.1007/s11401-008-0039-4.

[11]

X-P. Hu and D.-H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal., 41 (2009), 1272-1294. doi: 10.1137/080723983.

[12]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal., 42 (2010), 2539-2553. doi: 10.1137/100785168.

[13]

S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible Magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400. doi: 10.1007/s00220-010-0992-0.

[14]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed., New York, Pergamon, 1984.

[15]

Y. P. Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations, J. Differential Equations, 252 (2012), 2725-2738. doi: 10.1016/j.jde.2011.10.002.

[16]

N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 199-224. doi: 10.1016/S0294-1449(00)00123-2.

[17]

C. X. Miao and B. Q. Yuan, On the well-posesness of the Cauchy problem for an MHD system in Besov spaces, Math.Meth.Appl.Sci., 32 (2009), 53-76. doi: 10.1002/mma.1026.

[18]

H. Triebel, Theory of Function Spaces, Monographs in Mathematics, 78. Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.

[1]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic and Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[2]

Fucai Li, Yanmin Mu. Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1669-1705. doi: 10.3934/dcds.2018069

[3]

Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387

[4]

Qing Chen, Zhong Tan. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinetic and Related Models, 2012, 5 (4) : 743-767. doi: 10.3934/krm.2012.5.743

[5]

Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068

[6]

Xiaoli Li, Dehua Wang. Global solutions to the incompressible magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 763-783. doi: 10.3934/cpaa.2012.11.763

[7]

Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084

[8]

Kunquan Li, Yaobin Ou. Global wellposedness of vacuum free boundary problem of isentropic compressible magnetohydrodynamic equations with axisymmetry. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 487-522. doi: 10.3934/dcdsb.2021052

[9]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete and Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[10]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[11]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[12]

Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic and Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002

[13]

Fucai Li, Zhipeng Zhang. Zero viscosity-resistivity limit for the 3D incompressible magnetohydrodynamic equations in Gevrey class. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4279-4304. doi: 10.3934/dcds.2018187

[14]

Donatella Donatelli, Bernard Ducomet, Šárka Nečasová. Low Mach number limit for a model of accretion disk. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3239-3268. doi: 10.3934/dcds.2018141

[15]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[16]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[17]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[18]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[19]

Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083

[20]

Hong Cai, Zhong Tan. Time periodic solutions to the three--dimensional equations of compressible magnetohydrodynamic flows. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1847-1868. doi: 10.3934/dcds.2016.36.1847

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]