Citation: |
[1] |
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Tenth priniting, National Bureau of Standards, Applied Mathematics Series 55, 1972. |
[2] |
K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, 4 (2011), 87-107.doi: 10.3934/krm.2011.4.87. |
[3] |
L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal., 103 (1988), 151-167.doi: 10.1007/BF00251506. |
[4] |
C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841.doi: 10.4171/RMI/436. |
[5] |
A. Bensoussan, J-L. Lions and G. C. Papanicolaou, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157.doi: 10.2977/prims/1195188427. |
[6] |
M. Caceres, J. Carrillo and T. Goudon, Equilibration Rate for the Linear Inhomogeneous Relaxation-Time Boltzmann Equation for Charged Particles, Comm in PDE, 28 (2003), 969-989.doi: 10.1081/PDE-120021182. |
[7] |
P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro- reversible processes, Indiana Univ. Math. J., 49 (2000), 1175-1198. |
[8] |
L. Desvillettes and S. Salvarani, Asymptotic behavior of degenerate linear transport equations, Bull. Sci. Math., 133 (2009), 848-858.doi: 10.1016/j.bulsci.2008.09.001. |
[9] |
L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42.doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q. |
[10] |
L. Desvillettes and C. Villani, Rate of convergence toward the equilibrium in degenerate settings, "WASCOM 2003'' 12th Conference on Waves and Stability in Continuous Media, 153-165, World Sci. Publ., River Edge, NJ, 2004.doi: 10.1142/9789812702937_0020. |
[11] |
G. Doetsch, Introduction to the theory and application of the Laplace transform, Translated from the second German edition by Walter Nader. Springer-Verlag, New York-Heidelberg, 1974. vii+326 pp. |
[12] |
J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, available at http://fr.arxiv.org/abs/1005.1495 (2010) to appear in TAMS. |
[13] |
R. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, 24 (2011), 2165-2189.doi: 10.1088/0951-7715/24/8/003. |
[14] |
N. Dunford and J. T. Schwartz, Linear Operators. Part I, General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley & Sons, New York, 1988. |
[15] |
K. Engel and R. Nagel, One-Parameter Semigroups for linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000. |
[16] |
S. Ethier and T. Kurtz, Markov Processes, Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley & Sons, New York., 1986.doi: 10.1002/9780470316658. |
[17] |
S. R. Foguel, The Ergodic Theory of Markov processes, Van Nostrand Mathematical Studies, No. 21. Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969. |
[18] |
Y. Katznelson, An Introduction to Harmonic Analysis, Third edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004. |
[19] |
P. D. Lax, Functional Analysis, Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002. |
[20] |
A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Rat. Mech. Anal., 199 (2011), 493-525.doi: 10.1007/s00205-010-0354-2. |
[21] |
W. R. Rudin, Principles of Mathematical Analysis, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. |
[22] |
W. R. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill Book Co., New York, 1987. |
[23] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, 30 Princeton University Press, Princeton, N.J, 1970. |
[24] |
T. Tsuji, K. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, J. Stat Phys, 140 (2010), 518-543.doi: 10.1007/s10955-010-9997-5. |
[25] |
S. Ukai, On the existence of global solutions of mixed problems for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179-184.doi: 10.3792/pja/1195519027. |
[26] |
A. C. Zaanen, Integration. Completely Revised Edition of An Introduction to the Theory of Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967. |
[27] |
F. Zhang, Matrix Theory Basic Results and Techniques, Second Ed. Universitext, Springer, 2011.doi: 10.1007/978-1-4614-1099-7. |