\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Long time asymptotics of a degenerate linear kinetic transport equation

Abstract Related Papers Cited by
  • In the present article we prove an algebraic rate of decay towards the equilibrium for the solution of a non-homogeneous, linear kinetic transport equation. The estimate is of the form $C(1+t)^{-a}$ for some $a>0$. The total scattering cross-section $R(k)$ is allowed to degenerate but we assume that $R^{-a}(k)$ is integrable with respect to the invariant measure.
    Mathematics Subject Classification: Primary: 82C40, 82C70; Secondary: 35B40, 82D75.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Tenth priniting, National Bureau of Standards, Applied Mathematics Series 55, 1972.

    [2]

    K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, 4 (2011), 87-107.doi: 10.3934/krm.2011.4.87.

    [3]

    L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal., 103 (1988), 151-167.doi: 10.1007/BF00251506.

    [4]

    C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841.doi: 10.4171/RMI/436.

    [5]

    A. Bensoussan, J-L. Lions and G. C. Papanicolaou, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157.doi: 10.2977/prims/1195188427.

    [6]

    M. Caceres, J. Carrillo and T. Goudon, Equilibration Rate for the Linear Inhomogeneous Relaxation-Time Boltzmann Equation for Charged Particles, Comm in PDE, 28 (2003), 969-989.doi: 10.1081/PDE-120021182.

    [7]

    P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro- reversible processes, Indiana Univ. Math. J., 49 (2000), 1175-1198.

    [8]

    L. Desvillettes and S. Salvarani, Asymptotic behavior of degenerate linear transport equations, Bull. Sci. Math., 133 (2009), 848-858.doi: 10.1016/j.bulsci.2008.09.001.

    [9]

    L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42.doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.

    [10]

    L. Desvillettes and C. Villani, Rate of convergence toward the equilibrium in degenerate settings, "WASCOM 2003'' 12th Conference on Waves and Stability in Continuous Media, 153-165, World Sci. Publ., River Edge, NJ, 2004.doi: 10.1142/9789812702937_0020.

    [11]

    G. Doetsch, Introduction to the theory and application of the Laplace transform, Translated from the second German edition by Walter Nader. Springer-Verlag, New York-Heidelberg, 1974. vii+326 pp.

    [12]

    J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, available at http://fr.arxiv.org/abs/1005.1495 (2010) to appear in TAMS.

    [13]

    R. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, 24 (2011), 2165-2189.doi: 10.1088/0951-7715/24/8/003.

    [14]

    N. Dunford and J. T. Schwartz, Linear Operators. Part I, General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley & Sons, New York, 1988.

    [15]

    K. Engel and R. Nagel, One-Parameter Semigroups for linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.

    [16]

    S. Ethier and T. Kurtz, Markov Processes, Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley & Sons, New York., 1986.doi: 10.1002/9780470316658.

    [17]

    S. R. Foguel, The Ergodic Theory of Markov processes, Van Nostrand Mathematical Studies, No. 21. Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969.

    [18]

    Y. Katznelson, An Introduction to Harmonic Analysis, Third edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004.

    [19]

    P. D. Lax, Functional Analysis, Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.

    [20]

    A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Rat. Mech. Anal., 199 (2011), 493-525.doi: 10.1007/s00205-010-0354-2.

    [21]

    W. R. Rudin, Principles of Mathematical Analysis, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976.

    [22]

    W. R. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill Book Co., New York, 1987.

    [23]

    E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, 30 Princeton University Press, Princeton, N.J, 1970.

    [24]

    T. Tsuji, K. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, J. Stat Phys, 140 (2010), 518-543.doi: 10.1007/s10955-010-9997-5.

    [25]

    S. Ukai, On the existence of global solutions of mixed problems for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179-184.doi: 10.3792/pja/1195519027.

    [26]

    A. C. Zaanen, Integration. Completely Revised Edition of An Introduction to the Theory of Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967.

    [27]

    F. Zhang, Matrix Theory Basic Results and Techniques, Second Ed. Universitext, Springer, 2011.doi: 10.1007/978-1-4614-1099-7.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return