Advanced Search
Article Contents
Article Contents

Long time asymptotics of a degenerate linear kinetic transport equation

Abstract Related Papers Cited by
  • In the present article we prove an algebraic rate of decay towards the equilibrium for the solution of a non-homogeneous, linear kinetic transport equation. The estimate is of the form $C(1+t)^{-a}$ for some $a>0$. The total scattering cross-section $R(k)$ is allowed to degenerate but we assume that $R^{-a}(k)$ is integrable with respect to the invariant measure.
    Mathematics Subject Classification: Primary: 82C40, 82C70; Secondary: 35B40, 82D75.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Tenth priniting, National Bureau of Standards, Applied Mathematics Series 55, 1972.


    K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas, Kinet. Relat. Models, 4 (2011), 87-107.doi: 10.3934/krm.2011.4.87.


    L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal., 103 (1988), 151-167.doi: 10.1007/BF00251506.


    C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841.doi: 10.4171/RMI/436.


    A. Bensoussan, J-L. Lions and G. C. Papanicolaou, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157.doi: 10.2977/prims/1195188427.


    M. Caceres, J. Carrillo and T. Goudon, Equilibration Rate for the Linear Inhomogeneous Relaxation-Time Boltzmann Equation for Charged Particles, Comm in PDE, 28 (2003), 969-989.doi: 10.1081/PDE-120021182.


    P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro- reversible processes, Indiana Univ. Math. J., 49 (2000), 1175-1198.


    L. Desvillettes and S. Salvarani, Asymptotic behavior of degenerate linear transport equations, Bull. Sci. Math., 133 (2009), 848-858.doi: 10.1016/j.bulsci.2008.09.001.


    L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42.doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.


    L. Desvillettes and C. Villani, Rate of convergence toward the equilibrium in degenerate settings, "WASCOM 2003'' 12th Conference on Waves and Stability in Continuous Media, 153-165, World Sci. Publ., River Edge, NJ, 2004.doi: 10.1142/9789812702937_0020.


    G. Doetsch, Introduction to the theory and application of the Laplace transform, Translated from the second German edition by Walter Nader. Springer-Verlag, New York-Heidelberg, 1974. vii+326 pp.


    J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, available at http://fr.arxiv.org/abs/1005.1495 (2010) to appear in TAMS.


    R. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, 24 (2011), 2165-2189.doi: 10.1088/0951-7715/24/8/003.


    N. Dunford and J. T. Schwartz, Linear Operators. Part I, General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley & Sons, New York, 1988.


    K. Engel and R. Nagel, One-Parameter Semigroups for linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.


    S. Ethier and T. Kurtz, Markov Processes, Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley & Sons, New York., 1986.doi: 10.1002/9780470316658.


    S. R. Foguel, The Ergodic Theory of Markov processes, Van Nostrand Mathematical Studies, No. 21. Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969.


    Y. Katznelson, An Introduction to Harmonic Analysis, Third edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004.


    P. D. Lax, Functional Analysis, Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.


    A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Rat. Mech. Anal., 199 (2011), 493-525.doi: 10.1007/s00205-010-0354-2.


    W. R. Rudin, Principles of Mathematical Analysis, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976.


    W. R. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill Book Co., New York, 1987.


    E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, 30 Princeton University Press, Princeton, N.J, 1970.


    T. Tsuji, K. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, J. Stat Phys, 140 (2010), 518-543.doi: 10.1007/s10955-010-9997-5.


    S. Ukai, On the existence of global solutions of mixed problems for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179-184.doi: 10.3792/pja/1195519027.


    A. C. Zaanen, Integration. Completely Revised Edition of An Introduction to the Theory of Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967.


    F. Zhang, Matrix Theory Basic Results and Techniques, Second Ed. Universitext, Springer, 2011.doi: 10.1007/978-1-4614-1099-7.

  • 加载中

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint