\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system

Abstract Related Papers Cited by
  • In a recent paper Calogero and Alcántara [Kinet. Relat. Models, 4 (2011), pp. 401-426] derived a Lorentz-invariant Fokker-Planck equation, which corresponds to the evolution of a particle distribution associated with relativistic Brownian Motion. We study the ``one and one-half'' dimensional version of this problem with nonlinear electromagnetic interactions - the relativistic Vlasov-Maxwell-Fokker-Planck system - and obtain the first results concerning well-posedness of solutions. Specifically, we prove the global-in-time existence and uniqueness of classical solutions to the Cauchy problem and a gain in regularity of the distribution function in its momentum argument.
    Mathematics Subject Classification: Primary: 35L60, 35Q83; Secondary: 82C22, 82D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Alcántara and S. Calogero, On a relativistic Fokker-Planck equation in kinetic theory, Kinetic and Related Models, 4 (2011), 401-426.doi: 10.3934/krm.2011.4.401.

    [2]

    F. Bouchut, F. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Archive for Rational Mechanics and Analysis, 170 (2003), 1-15.doi: 10.1007/s00205-003-0265-6.

    [3]

    M. Chae, The global classical solution of the Vlasov-Maxwell-Fokker-Planck system near Maxwellian, Mathematical Models and Methods in Applied Sciences, 21 (2011), 1007-1025.doi: 10.1142/S0218202511005222.

    [4]

    P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions, Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, 19 (1986), 519-542.

    [5]

    R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Communications on Pure and Applied Mathematics 42 (1989), 729-757.doi: 10.1002/cpa.3160420603.

    [6]

    R. T. Glassey and J. Schaeffer, On the "one and one-half dimensional'' relativistic Vlasov-Maxwell system, Mathematical Methods in the Applied Sciences, 13 (1990), 169-179.doi: 10.1002/mma.1670130207.

    [7]

    R. T. Glassey, The Cauchy Problem in Kinetic Theory, $1^{st}$ edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.doi: 10.1137/1.9781611971477.

    [8]

    R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Archive for Rational Mechanics and Analysis, 92 (1986), 59-90.doi: 10.1007/BF00250732.

    [9]

    F. Hérau, Short and long time behavior of the Fokker-Planck equation in a confining potential and applications, Journal of Functional Analysis, 244 (2007), 95-118.doi: 10.1016/j.jfa.2006.11.013.

    [10]

    S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Communications on Pure and Applied Analysis, 1 (2002), 103-125.

    [11]

    R. Lai, On the one- and one-half-dimensional relativistic Vlasov-Fokker-Planck-Maxwell system, Mathematical Methods in the Applied Sciences, 18 (1995), 1013-1040.doi: 10.1002/mma.1670181302.

    [12]

    R. Lai, On the one-and-one-half-dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity, Mathematical Methods in the Applied Sciences, 21 (1998), 1287-1296.doi: 10.1002/(SICI)1099-1476(19980925)21:14<1287::AID-MMA996>3.0.CO;2-G.

    [13]

    J.-L. Lions, Équations Différentielles Opérationnelles et Problèmes Aux Limites, Die Grundlehren der mathematischen Wissenschaften, Bd. 111, Springer-Verlag, Berlin, 1961.

    [14]

    P.-L. Lions and B. Perthame, Propagation of moments and regularity for the $3$-dimensional Vlasov-Poisson system, Inventiones Mathematicae, 105 (1991), 415-430.doi: 10.1007/BF01232273.

    [15]

    S. Pankavich, Global existence for the Vlasov-Poisson system with steady spatial asymptotics, Communications in Partial Differential Equations, 31 (2006), 349-370.doi: 10.1080/03605300500358004.

    [16]

    S. Pankavich and N. Michalowski, A Short Proof Of Increased Parabolic Regularity, Submitted, 2014.

    [17]

    S. Pankavich and J. Schaeffer, Global classical solutions of the "one and one-half'' dimensional Vlasov-Maxwell-Fokker-Planck system, Submitted, 2014.

    [18]

    K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, Journal of Differential Equations, 95 (1992), 281-303.doi: 10.1016/0022-0396(92)90033-J.

    [19]

    J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Communications in Mathematical Physics, 104 (1986), 403-421.doi: 10.1007/BF01210948.

    [20]

    J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Communications in Partial Differential Equations, 16 (1991), 1312-1335.doi: 10.1080/03605309108820801.

    [21]

    L. Tartar, Topics in Nonlinear Analysis, Publications Mathématiques d'Orsay 78, Vol. 13, Université de Paris-Sud Département de Mathématique, Orsay, 1978.

    [22]

    N. G. van Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics, Wiley, New York, NY, 1967.

    [23]

    H. D. Victory, Jr. and B. P. O'Dwyer, On classical solutions of Vlasov-Poisson Fokker-Planck systems, Indiana University Mathematics Journal, 39 (1990), 105-156.doi: 10.1512/iumj.1990.39.39009.

    [24]

    C. Villani, Hypocoercivity, Memoirs of the American Mathematical Society, Vol. 202, (2009), iv+141 pp.doi: 10.1090/S0065-9266-09-00567-5.

    [25]

    T. Yang and H. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system, SIAM Journal on Mathematical Analysis, 42 (2010), 459-488.doi: 10.1137/090755796.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return