-
Previous Article
A Hamilton-Jacobi approach for front propagation in kinetic equations
- KRM Home
- This Issue
-
Next Article
Numerical methods for a class of generalized nonlinear Schrödinger equations
A kinetic theory description of liquid menisci at the microscale
1. | Politecnico di Milano, MOX, Dipartimento di Matematica, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy |
2. | Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Via La Masa 34, 20156 Milan, Italy, Italy |
References:
[1] |
M. Allen and D. Tildesley, Computer Simulation of Liquids, Clarendon Press, 1989. |
[2] |
R. Ardito, A. Corigliano and A. Frangi, Multiscale finite element models for predicting spontaneous adhesion in MEMS, Mecanique Industries, 11 (2010), 177-182.
doi: 10.1051/meca/2010028. |
[3] |
P. Barbante, A. Frezzotti, L. Gibelli and D. Giordano, A kinetic model for collisional effects in dense adsorbed gas layers, in Proceedings of the 27th International Symposium on Rarefied Gas Dynamics (eds. I. Wysong and A. Garcia), AIP Conference Proceedings, Vol. 1333, 2011, 458-463.
doi: 10.1063/1.3562690. |
[4] |
P. Barbante, A. Frezzotti, L. Gibelli, P. Legrenzi, A. Corigliano and A. Frangi, A kinetic model for capillary flows in MEMS, in Proceedings of the 28th International Symposium on Rarefied Gas Dynamics (eds. M. Mareschal and A. Santos), AIP Conference Proceedings, Vol. 1501, 2012, 713-719.
doi: 10.1063/1.4769612. |
[5] |
G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1995. |
[6] |
N. Carnahan and K. Starling, Equation of state for nonattracting rigid spheres, J. Chem. Phys., 51 (1969), 635-636.
doi: 10.1063/1.1672048. |
[7] |
C. Cercignani, The Boltzmann Equation and Its Applications, Springer, Berlin, 1988.
doi: 10.1007/978-1-4612-1039-9. |
[8] |
S. Cheng and M. Robbins, Capillary adhesion at the nanometer scale, Phys. Rev. E, 89 (2014), 062402.
doi: 10.1103/PhysRevE.89.062402. |
[9] |
J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Reviews of Modern Physics, 69 (1997), 865-929.
doi: 10.1103/RevModPhys.69.865. |
[10] |
D. Enskog, Kinetische theorie der wärmeleitung, reibung und selbstdiffusion in gewissen verdichteten gasen und flüssigkeiten, K. Svensk. Vet. Akad. Handl., 63 (1922), 5-44. |
[11] |
J. Fischer and M. Methfessel, Born-Green-Yvon approach to the local densities of a fluid at interfaces, Phys. Rev. A, 22 (1980), 2836-2843.
doi: 10.1103/PhysRevA.22.2836. |
[12] |
A. Frezzotti, A particle scheme for the numerical solution of the Enskog equation, Phys. Fluids, 9 (1997), 1329-1335.
doi: 10.1063/1.869247. |
[13] |
A. Frezzotti and L. Gibelli, A kinetic model for equilibrium and non-equilibrium structure of the vapor-liquid interface, in Proceedings of the 23rd International Symposium on Rarefied Gas Dynamics (eds. A. Ketsdever and E. Muntz), AIP Conference Proceedings, Vol. 663, 2003, 980-987.
doi: 10.1063/1.1581646. |
[14] |
A. Frezzotti and L. Gibelli, A kinetic model for fluid wall interaction, Proc. IMechE, Part C: J. Mech. Eng. Science, 222 (2008), 787-795.
doi: 10.1243/09544062JMES718. |
[15] |
A. Frezzotti, L. Gibelli and S. Lorenzani, Mean field kinetic theory description of evaporation of a fluid into vacuum, Phys. Fluids, 17 (2005), 012102.
doi: 10.1063/1.1824111. |
[16] |
A. Frezzotti, S. Nedea, A. Markvoort, P. Spijker and L. Gibelli, Comparison of molecular dynamics and kinetic modeling of gas-surface interaction, in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics (ed. T. Abe), AIP Conference Proceedings, Vol. 1084, 2008, 635-640.
doi: 10.1063/1.3076554. |
[17] |
M. Grmela, Kinetic equation approach to phase transitions, J. Stat. Phys., 3 (1971), 347-364.
doi: 10.1007/BF01011389. |
[18] |
Z. Guo, T. Zhao and Y. Shi, Simple kinetic model for fluid flows in the nanometer scale, Phys. Rev. E, 71 (2005), 035301(R).
doi: 10.1103/PhysRevE.71.035301. |
[19] |
J. Hansen and I. McDonald, Theory of Simple Liquids, Academic Press, 2006. |
[20] |
A. Hariri, J. Zu, J. Zu and R. B. Mrad, Modeling of wet stiction in microelectromechanical systems MEMS, J. Microelectromech. Syst., 16 (2007), 1276-1285.
doi: 10.1109/JMEMS.2007.904349. |
[21] |
J. Hirschfelder, C. Curtiss and R. Bird, The Molecular Theory of Gases and Liquids, Wiley-Interscience, 1964. |
[22] |
W. Kang and U. Landman, Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges in vacuum and gaseous environments, Physical Review Letters, 98 (2007), 064504.
doi: 10.1103/PhysRevLett.98.064504. |
[23] |
J. Karkheck and G. Stell, Mean field kinetic theories, J. Chem. Phys., 75 (1981), 1475-1487.
doi: 10.1063/1.442154. |
[24] |
G. Karniadakis, A. Beskok and A. Narayan, Microflows and Nanoflows: Fundamentals and Simulation, Springer, Berlin, 2005. |
[25] |
R. Maboudian and R. Howe, Critical review: Stiction in surface micromechanical structures, J. Vac. Sci. Technol. B, 15 (1997), 1-19. |
[26] |
J. Rowlinson and B. Widom, Molecular Theory of Capillarity, Dover Pubns, 2003. |
[27] |
H. van Beijeren and M. Ernst, The modified Enskog equation, Physica, 68 (1973), 437-456. |
show all references
References:
[1] |
M. Allen and D. Tildesley, Computer Simulation of Liquids, Clarendon Press, 1989. |
[2] |
R. Ardito, A. Corigliano and A. Frangi, Multiscale finite element models for predicting spontaneous adhesion in MEMS, Mecanique Industries, 11 (2010), 177-182.
doi: 10.1051/meca/2010028. |
[3] |
P. Barbante, A. Frezzotti, L. Gibelli and D. Giordano, A kinetic model for collisional effects in dense adsorbed gas layers, in Proceedings of the 27th International Symposium on Rarefied Gas Dynamics (eds. I. Wysong and A. Garcia), AIP Conference Proceedings, Vol. 1333, 2011, 458-463.
doi: 10.1063/1.3562690. |
[4] |
P. Barbante, A. Frezzotti, L. Gibelli, P. Legrenzi, A. Corigliano and A. Frangi, A kinetic model for capillary flows in MEMS, in Proceedings of the 28th International Symposium on Rarefied Gas Dynamics (eds. M. Mareschal and A. Santos), AIP Conference Proceedings, Vol. 1501, 2012, 713-719.
doi: 10.1063/1.4769612. |
[5] |
G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1995. |
[6] |
N. Carnahan and K. Starling, Equation of state for nonattracting rigid spheres, J. Chem. Phys., 51 (1969), 635-636.
doi: 10.1063/1.1672048. |
[7] |
C. Cercignani, The Boltzmann Equation and Its Applications, Springer, Berlin, 1988.
doi: 10.1007/978-1-4612-1039-9. |
[8] |
S. Cheng and M. Robbins, Capillary adhesion at the nanometer scale, Phys. Rev. E, 89 (2014), 062402.
doi: 10.1103/PhysRevE.89.062402. |
[9] |
J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Reviews of Modern Physics, 69 (1997), 865-929.
doi: 10.1103/RevModPhys.69.865. |
[10] |
D. Enskog, Kinetische theorie der wärmeleitung, reibung und selbstdiffusion in gewissen verdichteten gasen und flüssigkeiten, K. Svensk. Vet. Akad. Handl., 63 (1922), 5-44. |
[11] |
J. Fischer and M. Methfessel, Born-Green-Yvon approach to the local densities of a fluid at interfaces, Phys. Rev. A, 22 (1980), 2836-2843.
doi: 10.1103/PhysRevA.22.2836. |
[12] |
A. Frezzotti, A particle scheme for the numerical solution of the Enskog equation, Phys. Fluids, 9 (1997), 1329-1335.
doi: 10.1063/1.869247. |
[13] |
A. Frezzotti and L. Gibelli, A kinetic model for equilibrium and non-equilibrium structure of the vapor-liquid interface, in Proceedings of the 23rd International Symposium on Rarefied Gas Dynamics (eds. A. Ketsdever and E. Muntz), AIP Conference Proceedings, Vol. 663, 2003, 980-987.
doi: 10.1063/1.1581646. |
[14] |
A. Frezzotti and L. Gibelli, A kinetic model for fluid wall interaction, Proc. IMechE, Part C: J. Mech. Eng. Science, 222 (2008), 787-795.
doi: 10.1243/09544062JMES718. |
[15] |
A. Frezzotti, L. Gibelli and S. Lorenzani, Mean field kinetic theory description of evaporation of a fluid into vacuum, Phys. Fluids, 17 (2005), 012102.
doi: 10.1063/1.1824111. |
[16] |
A. Frezzotti, S. Nedea, A. Markvoort, P. Spijker and L. Gibelli, Comparison of molecular dynamics and kinetic modeling of gas-surface interaction, in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics (ed. T. Abe), AIP Conference Proceedings, Vol. 1084, 2008, 635-640.
doi: 10.1063/1.3076554. |
[17] |
M. Grmela, Kinetic equation approach to phase transitions, J. Stat. Phys., 3 (1971), 347-364.
doi: 10.1007/BF01011389. |
[18] |
Z. Guo, T. Zhao and Y. Shi, Simple kinetic model for fluid flows in the nanometer scale, Phys. Rev. E, 71 (2005), 035301(R).
doi: 10.1103/PhysRevE.71.035301. |
[19] |
J. Hansen and I. McDonald, Theory of Simple Liquids, Academic Press, 2006. |
[20] |
A. Hariri, J. Zu, J. Zu and R. B. Mrad, Modeling of wet stiction in microelectromechanical systems MEMS, J. Microelectromech. Syst., 16 (2007), 1276-1285.
doi: 10.1109/JMEMS.2007.904349. |
[21] |
J. Hirschfelder, C. Curtiss and R. Bird, The Molecular Theory of Gases and Liquids, Wiley-Interscience, 1964. |
[22] |
W. Kang and U. Landman, Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges in vacuum and gaseous environments, Physical Review Letters, 98 (2007), 064504.
doi: 10.1103/PhysRevLett.98.064504. |
[23] |
J. Karkheck and G. Stell, Mean field kinetic theories, J. Chem. Phys., 75 (1981), 1475-1487.
doi: 10.1063/1.442154. |
[24] |
G. Karniadakis, A. Beskok and A. Narayan, Microflows and Nanoflows: Fundamentals and Simulation, Springer, Berlin, 2005. |
[25] |
R. Maboudian and R. Howe, Critical review: Stiction in surface micromechanical structures, J. Vac. Sci. Technol. B, 15 (1997), 1-19. |
[26] |
J. Rowlinson and B. Widom, Molecular Theory of Capillarity, Dover Pubns, 2003. |
[27] |
H. van Beijeren and M. Ernst, The modified Enskog equation, Physica, 68 (1973), 437-456. |
[1] |
Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146 |
[2] |
Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157 |
[3] |
Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137 |
[4] |
Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021 |
[5] |
Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic and Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001 |
[6] |
Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156 |
[7] |
T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665 |
[8] |
Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 |
[9] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[10] |
Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090 |
[11] |
Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541 |
[12] |
Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217 |
[13] |
K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591 |
[14] |
Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks and Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020 |
[15] |
Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011 |
[16] |
Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401 |
[17] |
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006 |
[18] |
Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93 |
[19] |
Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016 |
[20] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]