Advanced Search
Article Contents
Article Contents

Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions

Abstract Related Papers Cited by
  • We prove the immediate appearance of an exponential lower bound, uniform in time and space, for continuous mild solutions to the full Boltzmann equation in a $C^2$ convex bounded domain with the physical Maxwellian diffusion boundary conditions, under the sole assumption of regularity of the solution. We investigate a wide range of collision kernels, with and without Grad's angular cutoff assumption. In particular, the lower bound is proven to be Maxwellian in the case of cutoff collision kernels. Moreover, these results are entirely constructive if the initial distribution contains no vacuum, with explicit constants depending only on the a priori bounds on the solution.
    Mathematics Subject Classification: Primary: 35B09, 35Q20; Secondary: 82B40.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Briant, Instantaneous filling of the vacuum for the full Boltzmann equation in bounded domains, preprint.


    T. Carleman, Sur la théorie de l'équation intégrodifférentielle de Boltzmann, Acta Math., 60 (1933), 91-146.doi: 10.1007/BF02398270.


    C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988.


    C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4419-8524-8.


    L. Desvillettesand and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42.


    L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), 245-316.doi: 10.1007/s00222-004-0389-9.


    H. Grad, Principles of the kinetic theory of gases, in Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, Springer-Verlag, Berlin, 1958, 205-294.


    M. P. Gualdani, S. Mischler and C. Mouhot, Factorization for non-symmetric operators and exponential H-theorem, preprint.


    Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197 (2010), 713-809.doi: 10.1007/s00205-009-0285-y.


    C. Mouhot, Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions, Comm. Partial Differential Equations, 30 (2005), 881-917.doi: 10.1081/PDE-200059299.


    A. Pulvirenti and B. Wennberg, A Maxwellian lower bound for solutions to the Boltzmann equation, Comm. Math. Phys., 183 (1997), 145-160.doi: 10.1007/BF02509799.


    C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, 2002, 71-305.doi: 10.1016/S1874-5792(02)80004-0.

  • 加载中

Article Metrics

HTML views() PDF downloads(82) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint