-
Previous Article
Compressible Euler equations interacting with incompressible flow
- KRM Home
- This Issue
-
Next Article
Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions
On the homogeneous Boltzmann equation with soft-potential collision kernels
1. | Department of Mathematics, College of Natural Sciences, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756 |
References:
[1] |
R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152 (2000), 327-355.
doi: 10.1007/s002050000083. |
[2] |
L. Arkeryd, On the Boltzmann equation, Part I: Existence, Part II: The full initial value problem, Arch. Rational Mech. Anal., 45 (1972), 1-16. |
[3] |
L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rational Mech. Anal., 77 (1981), 11-21.
doi: 10.1007/BF00280403. |
[4] |
F. Bouchut and L. Desvillettes, A proof of the smoothing properties of the positive part of Boltzmann's kernel, Rev. Mat. Iberoamericana, 14 (1998), 47-61.
doi: 10.4171/RMI/233. |
[5] |
A. V. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules, Dokl. Akad. Nauk SSSR, 225 (1975), 1041-1044. |
[6] |
E. Carlen, M. Carvalho and X. Lu, On strong convergence to equilibrium for the Boltzmann equation with soft potentials, J. Stat. Phys., 135 (2009), 681-736.
doi: 10.1007/s10955-009-9741-1. |
[7] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[8] |
Y.-K. Cho and H. Yun, On the gain of regularity for the positive part of Boltzmann collision operator associated with soft potentials, Kinetic and Related Models, 5 (2012), 769-786.
doi: 10.3934/krm.2012.5.769. |
[9] |
L. Desvillettes and C. Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, Arch. Rational Mech. Anal., 193 (2009), 227-253.
doi: 10.1007/s00205-009-0233-x. |
[10] |
N. Fournier and G. Héléne, On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity, J. Stat. Phys., 131 (2008), 749-781.
doi: 10.1007/s10955-008-9511-5. |
[11] |
L. Grafakos, On multilinear fractional integrals, Studia Math., 102 (1992), 49-56. |
[12] |
T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions, J. Stat. Phys., 89 (1997), 751-776.
doi: 10.1007/BF02765543. |
[13] |
C. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Research Letters, 6 (1999), 1-15.
doi: 10.4310/MRL.1999.v6.n1.a1. |
[14] |
P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications, I, II, J. Math. Kyoto Univ., 34 (1994), 391-427, 429-461. |
[15] |
X. Lu and Y. Zhang, On nonnegativity of solutions of the Boltzmann equation, Transport Theor. Stat., 30 (2001), 641-657.
doi: 10.1081/TT-100107420. |
[16] |
S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. Henri Poincaré, 16 (1999), 467-501.
doi: 10.1016/S0294-1449(99)80025-0. |
[17] |
C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Rational Mech. Anal., 173 (2004), 169-212.
doi: 10.1007/s00205-004-0316-7. |
[18] |
K. T. Smith, Primer of Modern Analysis, Springer-Verlag, New York, 1983. |
[19] |
E. M. Stein, Singular Integrals and Differentiabilty Properties of Functions, Princeton Univ. Press, 1970. |
[20] |
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. |
[21] |
C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.
doi: 10.1007/s002050050106. |
[22] |
C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, 2002, 71-305.
doi: 10.1016/S1874-5792(02)80004-0. |
show all references
References:
[1] |
R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., 152 (2000), 327-355.
doi: 10.1007/s002050000083. |
[2] |
L. Arkeryd, On the Boltzmann equation, Part I: Existence, Part II: The full initial value problem, Arch. Rational Mech. Anal., 45 (1972), 1-16. |
[3] |
L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rational Mech. Anal., 77 (1981), 11-21.
doi: 10.1007/BF00280403. |
[4] |
F. Bouchut and L. Desvillettes, A proof of the smoothing properties of the positive part of Boltzmann's kernel, Rev. Mat. Iberoamericana, 14 (1998), 47-61.
doi: 10.4171/RMI/233. |
[5] |
A. V. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules, Dokl. Akad. Nauk SSSR, 225 (1975), 1041-1044. |
[6] |
E. Carlen, M. Carvalho and X. Lu, On strong convergence to equilibrium for the Boltzmann equation with soft potentials, J. Stat. Phys., 135 (2009), 681-736.
doi: 10.1007/s10955-009-9741-1. |
[7] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[8] |
Y.-K. Cho and H. Yun, On the gain of regularity for the positive part of Boltzmann collision operator associated with soft potentials, Kinetic and Related Models, 5 (2012), 769-786.
doi: 10.3934/krm.2012.5.769. |
[9] |
L. Desvillettes and C. Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, Arch. Rational Mech. Anal., 193 (2009), 227-253.
doi: 10.1007/s00205-009-0233-x. |
[10] |
N. Fournier and G. Héléne, On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity, J. Stat. Phys., 131 (2008), 749-781.
doi: 10.1007/s10955-008-9511-5. |
[11] |
L. Grafakos, On multilinear fractional integrals, Studia Math., 102 (1992), 49-56. |
[12] |
T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions, J. Stat. Phys., 89 (1997), 751-776.
doi: 10.1007/BF02765543. |
[13] |
C. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Research Letters, 6 (1999), 1-15.
doi: 10.4310/MRL.1999.v6.n1.a1. |
[14] |
P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications, I, II, J. Math. Kyoto Univ., 34 (1994), 391-427, 429-461. |
[15] |
X. Lu and Y. Zhang, On nonnegativity of solutions of the Boltzmann equation, Transport Theor. Stat., 30 (2001), 641-657.
doi: 10.1081/TT-100107420. |
[16] |
S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. Henri Poincaré, 16 (1999), 467-501.
doi: 10.1016/S0294-1449(99)80025-0. |
[17] |
C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Rational Mech. Anal., 173 (2004), 169-212.
doi: 10.1007/s00205-004-0316-7. |
[18] |
K. T. Smith, Primer of Modern Analysis, Springer-Verlag, New York, 1983. |
[19] |
E. M. Stein, Singular Integrals and Differentiabilty Properties of Functions, Princeton Univ. Press, 1970. |
[20] |
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. |
[21] |
C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.
doi: 10.1007/s002050050106. |
[22] |
C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, 2002, 71-305.
doi: 10.1016/S1874-5792(02)80004-0. |
[1] |
Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic and Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919 |
[2] |
Yong-Kum Cho, Hera Yun. On the gain of regularity for the positive part of Boltzmann collision operator associated with soft-potentials. Kinetic and Related Models, 2012, 5 (4) : 769-786. doi: 10.3934/krm.2012.5.769 |
[3] |
Léo Glangetas, Hao-Guang Li, Chao-Jiang Xu. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation. Kinetic and Related Models, 2016, 9 (2) : 299-371. doi: 10.3934/krm.2016.9.299 |
[4] |
Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic and Related Models, 2008, 1 (3) : 453-489. doi: 10.3934/krm.2008.1.453 |
[5] |
Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 187-212. doi: 10.3934/dcds.2009.24.187 |
[6] |
Zheng-an Yao, Yu-Long Zhou. High order approximation for the Boltzmann equation without angular cutoff under moderately soft potentials. Kinetic and Related Models, 2020, 13 (3) : 435-478. doi: 10.3934/krm.2020015 |
[7] |
Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111 |
[8] |
Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic and Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383 |
[9] |
Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic and Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036 |
[10] |
Nicolas Fournier. A new regularization possibility for the Boltzmann equation with soft potentials. Kinetic and Related Models, 2008, 1 (3) : 405-414. doi: 10.3934/krm.2008.1.405 |
[11] |
Fei Meng, Fang Liu. On the inelastic Boltzmann equation for soft potentials with diffusion. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5197-5217. doi: 10.3934/cpaa.2020233 |
[12] |
Sang-Gyun Youn. On the Sobolev embedding properties for compact matrix quantum groups of Kac type. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3341-3366. doi: 10.3934/cpaa.2020148 |
[13] |
Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic and Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024 |
[14] |
Marcel Braukhoff. Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness. Kinetic and Related Models, 2019, 12 (2) : 445-482. doi: 10.3934/krm.2019019 |
[15] |
Yingzhe Fan, Yuanjie Lei. The Boltzmann equation with frictional force for very soft potentials in the whole space. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4303-4329. doi: 10.3934/dcds.2019174 |
[16] |
James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137 |
[17] |
Alexander Alekseenko, Truong Nguyen, Aihua Wood. A deterministic-stochastic method for computing the Boltzmann collision integral in $\mathcal{O}(MN)$ operations. Kinetic and Related Models, 2018, 11 (5) : 1211-1234. doi: 10.3934/krm.2018047 |
[18] |
Sabri Bahrouni, Hichem Ounaies. Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2917-2944. doi: 10.3934/dcds.2020155 |
[19] |
Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic and Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020 |
[20] |
Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic and Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]