June  2015, 8(2): 381-394. doi: 10.3934/krm.2015.8.381

Galactic dynamics in MOND---Existence of equilibria with finite mass and compact support

1. 

Fakultät für Mathematik, Physik und Informatik, Universität Bayreuth, D-95440 Bayreuth, Germany

Received  September 2014 Revised  November 2014 Published  March 2015

We consider a self-gravitating collisionless gas where the gravitational interaction is modeled according to MOND (modified Newtonian dynamics). For the resulting modified Vlasov-Poisson system we establish the existence of spherically symmetric equilibria with compact support and finite mass. In the standard situation where gravity is modeled by Newton's law the latter properties only hold under suitable restrictions on the prescribed microscopic equation of state. Under the MOND regime no such restrictions are needed.
Citation: Gerhard Rein. Galactic dynamics in MOND---Existence of equilibria with finite mass and compact support. Kinetic and Related Models, 2015, 8 (2) : 381-394. doi: 10.3934/krm.2015.8.381
References:
[1]

J. Batt, W. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal., 93 (1986), 159-183. doi: 10.1007/BF00279958.

[2]

J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, 1987. doi: 10.1063/1.2811635.

[3]

B. Famaey and S. McGaugh, Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions, Living Rev. Relativity, 15 (2012), p10. doi: 10.12942/lrr-2012-10.

[4]

Y. Guo and G. Rein, Stable steady states in stellar dynamics, Arch. Rational Mech. Anal., 147 (1999), 225-243. doi: 10.1007/s002050050150.

[5]

Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Commun. Math. Phys., 271 (2007), 489-509. doi: 10.1007/s00220-007-0212-8.

[6]

M. Lemou, F. Méhats and P. Raphaël, Orbital stability of spherical galactic models, Invent. math., 187 (2012), 145-194. doi: 10.1007/s00222-011-0332-9.

[7]

M. Milgrom, Light and dark in the universe, preprint, arXiv:1203.0954v1.

[8]

M. Milgrom, The MOND paradigm, preprint, arXiv:0801.3133.

[9]

M. Milgrom, Quasi-linear formulation of MOND, Mon. Not. R. Astron. Soc., 403 (2010), 886-895. doi: 10.1111/j.1365-2966.2009.16184.x.

[10]

M. Núñez, On the gravitational potential of modified Newtonian dynamics, J. Math. Phys., 54 (2013), 082502, 8pp. doi: 10.1063/1.4817858.

[11]

T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case-A simple proof for finite extension, SIAM J. Math. Anal., 45 (2013), 900-914. doi: 10.1137/120896712.

[12]

G. Rein, Collisionless kinetic equations from astrophysics-The Vlasov-Poisson system, in Handbook of Differential Equations, Evolutionary Equations, Vol. 3 (eds. C. M. Dafermos and E. Feireisl), Elsevier, 2007, 383-476. doi: 10.1016/S1874-5717(07)80008-9.

[13]

G. Rein and A. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics, Math. Proc. Camb.\Phil. Soc., 128 (2000), 363-380. doi: 10.1017/S0305004199004193.

[14]

J. Schaeffer, A class of counterexamples to Jeans' Theorem for the Vlasov-Einstein system, Commun. Math. Phys., 204 (1999), 313-327. doi: 10.1007/s002200050647.

show all references

References:
[1]

J. Batt, W. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal., 93 (1986), 159-183. doi: 10.1007/BF00279958.

[2]

J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, 1987. doi: 10.1063/1.2811635.

[3]

B. Famaey and S. McGaugh, Modified Newtonian dynamics (MOND): Observational phenomenology and relativistic extensions, Living Rev. Relativity, 15 (2012), p10. doi: 10.12942/lrr-2012-10.

[4]

Y. Guo and G. Rein, Stable steady states in stellar dynamics, Arch. Rational Mech. Anal., 147 (1999), 225-243. doi: 10.1007/s002050050150.

[5]

Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Commun. Math. Phys., 271 (2007), 489-509. doi: 10.1007/s00220-007-0212-8.

[6]

M. Lemou, F. Méhats and P. Raphaël, Orbital stability of spherical galactic models, Invent. math., 187 (2012), 145-194. doi: 10.1007/s00222-011-0332-9.

[7]

M. Milgrom, Light and dark in the universe, preprint, arXiv:1203.0954v1.

[8]

M. Milgrom, The MOND paradigm, preprint, arXiv:0801.3133.

[9]

M. Milgrom, Quasi-linear formulation of MOND, Mon. Not. R. Astron. Soc., 403 (2010), 886-895. doi: 10.1111/j.1365-2966.2009.16184.x.

[10]

M. Núñez, On the gravitational potential of modified Newtonian dynamics, J. Math. Phys., 54 (2013), 082502, 8pp. doi: 10.1063/1.4817858.

[11]

T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case-A simple proof for finite extension, SIAM J. Math. Anal., 45 (2013), 900-914. doi: 10.1137/120896712.

[12]

G. Rein, Collisionless kinetic equations from astrophysics-The Vlasov-Poisson system, in Handbook of Differential Equations, Evolutionary Equations, Vol. 3 (eds. C. M. Dafermos and E. Feireisl), Elsevier, 2007, 383-476. doi: 10.1016/S1874-5717(07)80008-9.

[13]

G. Rein and A. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics, Math. Proc. Camb.\Phil. Soc., 128 (2000), 363-380. doi: 10.1017/S0305004199004193.

[14]

J. Schaeffer, A class of counterexamples to Jeans' Theorem for the Vlasov-Einstein system, Commun. Math. Phys., 204 (1999), 313-327. doi: 10.1007/s002200050647.

[1]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[2]

Markus Kunze. A second look at the Kurth solution in galactic dynamics. Kinetic and Related Models, 2022, 15 (4) : 651-662. doi: 10.3934/krm.2021028

[3]

Jörg Weber. Confined steady states of the relativistic Vlasov–Maxwell system in an infinitely long cylinder. Kinetic and Related Models, 2020, 13 (6) : 1135-1161. doi: 10.3934/krm.2020040

[4]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[5]

Elbaz I. Abouelmagd, Juan L. G. Guirao, Aatef Hobiny, Faris Alzahrani. Dynamics of a tethered satellite with variable mass. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1035-1045. doi: 10.3934/dcdss.2015.8.1035

[6]

Yuncheng You. Asymptotical dynamics of the modified Schnackenberg equations. Conference Publications, 2009, 2009 (Special) : 857-868. doi: 10.3934/proc.2009.2009.857

[7]

Carmen Cortázar, Manuel Elgueta, Jorge García-Melián, Salomé Martínez. Finite mass solutions for a nonlocal inhomogeneous dispersal equation. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1409-1419. doi: 10.3934/dcds.2015.35.1409

[8]

Alexander Kemarsky, Frédéric Paulin, Uri Shapira. Escape of mass in homogeneous dynamics in positive characteristic. Journal of Modern Dynamics, 2017, 11: 369-407. doi: 10.3934/jmd.2017015

[9]

Dmitri Finkelshtein, Yuri Kondratiev, Yuri Kozitsky. Glauber dynamics in continuum: A constructive approach to evolution of states. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1431-1450. doi: 10.3934/dcds.2013.33.1431

[10]

Monika Joanna Piotrowska, Joanna Górecka, Urszula Foryś. The role of optimism and pessimism in the dynamics of emotional states. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 401-423. doi: 10.3934/dcdsb.2018028

[11]

Xiaoyu Zeng, Yimin Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5263-5273. doi: 10.3934/dcds.2019214

[12]

Sylvain Sorin, Cheng Wan. Finite composite games: Equilibria and dynamics. Journal of Dynamics and Games, 2016, 3 (1) : 101-120. doi: 10.3934/jdg.2016005

[13]

Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463

[14]

Roy Malka, Vered Rom-Kedar. Bacteria--phagocyte dynamics, axiomatic modelling and mass-action kinetics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 475-502. doi: 10.3934/mbe.2011.8.475

[15]

Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062

[16]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[17]

Gianluca Frasca-Caccia, Peter E. Hydon. Locally conservative finite difference schemes for the modified KdV equation. Journal of Computational Dynamics, 2019, 6 (2) : 307-323. doi: 10.3934/jcd.2019015

[18]

Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483

[19]

Xin Liu, Yongjin Lu, Xin-Guang Yang. Stability and dynamics for a nonlinear one-dimensional full compressible non-Newtonian fluids. Evolution Equations and Control Theory, 2021, 10 (2) : 365-384. doi: 10.3934/eect.2020071

[20]

Katherine A. Newhall, Gregor Kovačič, Ildar Gabitov. Polarization dynamics in a resonant optical medium with initial coherence between degenerate states. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2285-2301. doi: 10.3934/dcdss.2020189

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]