\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation

Abstract Related Papers Cited by
  • The rigorous derivation of the Uehling-Uhlenbeck equation from more fundamental quantum many-particle systems is a challenging open problem in mathematics. In this paper, we exam the weak coupling limit of quantum $N$ -particle dynamics. We assume the integral of the microscopic interaction is zero and we assume $W^{4,1}$ per-particle regularity on the coressponding BBGKY sequence so that we can rigorously commute limits and integrals. We prove that, if the BBGKY sequence does converge in some weak sense, then this weak-coupling limit must satisfy the infinite quantum Maxwell-Boltzmann hierarchy instead of the expected infinite Uehling-Uhlenbeck hierarchy, regardless of the statistics the particles obey. Our result indicates that, in order to derive the Uehling-Uhlenbeck equation, one must work with per-particle regularity bound below $W^{4,1}$.
    Mathematics Subject Classification: Primary: 35Q20, 81V70; Secondary: 35Q70, 82B40, 82C22.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, Some considerations on the derivation of the nonlinear quantum boltzmann equation, J. Stat. Phys., 116 (2004), 381-410.doi: 10.1023/B:JOSS.0000037205.09518.3f.

    [2]

    D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, On the weak-coupling limit for bosons and fermions, Math. Mod. Meth. Appl. Sci., 15 (2005), 1811-1843.doi: 10.1142/S0218202505000984.

    [3]

    D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, From the N-body Schroedinger equation to the quantum Boltzmann equation: A term-by-term convergence result in the weak coupling regime, Commun. Math. Phys., 277 (2008), 1-44.doi: 10.1007/s00220-007-0347-7.

    [4]

    L. Erdös, M. Salmhofer and H. T. Yau, On the quantum Boltzmann equation, J. Stat. Phys., 116 (2004), 367-380.doi: 10.1023/B:JOSS.0000037224.56191.ed.

    [5]

    I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-range Potentials, Zürich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013.

    [6]

    F. King, BBGKY Hierarchy for Positive Potentials, Ph.D thesis, Univ. California, Berkley, 1975.

    [7]

    O. E. Lanford III, Time Evolution of Large Classical Systems, Lecture Notes in Physics, 38 (1975), 1-111.

    [8]

    E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases, Phys. Rev., 43 (1933), 552-561.doi: 10.1103/PhysRev.43.552.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return