Advanced Search
Article Contents
Article Contents

Diffusion limit for the radiative transfer equation perturbed by a Wiener process

Abstract Related Papers Cited by
  • The aim of this paper is the rigorous derivation of a stochastic non-linear diffusion equation from a radiative transfer equation perturbed with a random noise. The proof of the convergence relies on a formal Hilbert expansion and the estimation of the remainder. The Hilbert expansion has to be done up to order 3 to overcome some difficulties caused by the random noise.
    Mathematics Subject Classification: Primary: 35R60, 60H15; Secondary: 35B25, 85A25.


    \begin{equation} \\ \end{equation}
  • [1]

    C. Bardos, F. Golse and B. Perthame, The Rosseland approximation for the radiative transfer equations, Comm. Pure Appl. Math., 40 (1987), 691-721.doi: 10.1002/cpa.3160400603.


    C. Bardos, F. Golse, B. Perthame and R. Sentis, The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation, J. Funct. Anal., 77 (1988), 434-460.doi: 10.1016/0022-1236(88)90096-1.


    P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968.


    P. Bouchut and L. Desvillettes, Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 19-36.doi: 10.1017/S030821050002744X.


    Z. Brzeźniak, On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep., 61 (1997), 245-295.doi: 10.1080/17442509708834122.


    Z. Brzeźniak and S. Peszat, Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process, Studia Math., 137 (1999), 261-299.


    G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9780511666223.


    A. de Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise, Comm. Math. Phys., 205 (1999), 161-181.doi: 10.1007/s002200050672.


    A. de Bouard and M. Gazeau, A diffusion approximation theorem for a nonlinear PDE with application to random birefringent optical fibers, Ann. Appl. Probab., 22 (2012), 2460-2504.doi: 10.1214/11-AAP839.


    A. Debussche and J. Vovelle, Diffusion limit for a stochastic kinetic problem, Commun. Pure Appl. Anal., 11 (2012), 2305-2326.doi: 10.3934/cpaa.2012.11.2305.


    A. Debussche, S. De Moor and M. Hofmanová, A regularity result for quasilinear stochastic partial differential equations of parabolic type, SIAM Journal on Mathematical Analysis, 47 (2015), 1590-1614.doi: 10.1137/130950549.


    A. Debussche, S. De Moor and J. Vovelle, Diffusion limit for the radiative transfer equation perturbed by a Markovian process, preprint, arXiv:1405.2192.


    J. P. Fouque, J. Garnier, G. Papanicolaou and K. Solna, Wave Propagation and Time Reversal in Randomly Layered Media, Stochastic Modelling and Applied Probability, 56, Springer, New York, 2007.doi: 10.1007/978-0-387-49808-9_4.


    I. Gyöngy, Existence and uniqueness results for semilinear stochastic partial differential equations, Stochastic Process. Appl., 73 (1998), 271-299.doi: 10.1016/S0304-4149(97)00103-8.


    I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.doi: 10.1007/BF01203833.


    P.-L. Lions, B. Perthame and P. E. Souganidis, Stochastic averaging lemmas for kinetic equations, in S'eminaire Laurent Schwartz - EDP et applications (2011-2012), Exp. No. 26, 17pp, arXiv:1204.0317. doi: 10.5802/slsedp.21.


    A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Comm. Math. Phys., 281 (2008), 573-596.doi: 10.1007/s00220-008-0523-4.


    G. C. Papanicolaou, D. Stroock and S. R. S. Varadhan, Martingale approach to some limit theorems, in Papers from the Duke Turbulence Conference (Duke Univ., Durham, N.C., 1976), Academic Press, 1977.


    S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2007.doi: 10.1017/CBO9780511721373.


    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.doi: 10.1007/BF01762360.

  • 加载中

Article Metrics

HTML views() PDF downloads(119) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint