-
Previous Article
Stability of a superposition of shock waves with contact discontinuities for the Jin-Xin relaxation system
- KRM Home
- This Issue
-
Next Article
Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature
General moment system for plasma physics based on minimum entropy principle
1. | Univ. Bordeaux, CELIA, UMR 5107, F- 33400 TALENCE, France, France |
2. | Université de Bordeaux 1, 351, cours de la Libération, 33405 TALENCE Cedex |
References:
[1] |
G. Alldredge, C. Hauck and A. L. Tits, High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem, SIAM J. Sci. Comput., 34 (2012), B361-B391.
doi: 10.1137/11084772X. |
[2] |
P. L. Bathnagar, E. P. Gross and M. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-525. |
[3] |
Yu. A. Berezin, V. N. Khudick and M. S. Pekker, Conservative finite-difference schemes for the Fokker-Planck equation not violating the law of an increasing entropy, J. Comput. Phys., 69 (1987), 163-174.
doi: 10.1016/0021-9991(87)90160-4. |
[4] |
S. Brull, Existence of solutions to discrete coagulation-fragmentation equations with transport and diffusion, Annales de la Faculté de Toulouse, 18 (2008), 1-22. |
[5] |
S. Brull, P. Degond, F. Deluzet and A. Mouton, An asymptotic preserving scheme for a bi-fluid Euler-Lorentz system, Kinetic and Related Models, 4 (2011), 991-1023. |
[6] |
C. Buet and S. Cordier, Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation, J. Comput. Phys., 145 (1998), 228-245.
doi: 10.1006/jcph.1998.6015. |
[7] |
C. Buet and S. Cordier, Numerical analysis of conservative and entropy schemes for the Fokker-Planck-Landau equation, SIAM J. Numer Anal., 36 (1999), 953-973.
doi: 10.1137/S0036142997322102. |
[8] |
C. Buet, S. Cordier, P. Degond and M. Lemou, Fast algorithms fot numerical, conservative, and entropy approximations of the Fokker-Planck-Landau equation, J. Comput. Phys., 133 (1997), 310-322.
doi: 10.1006/jcph.1997.5669. |
[9] |
K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley Publishing Company, Reading, Massachusetts, 1967. |
[10] |
F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New York, 1984.
doi: 10.1007/978-1-4757-5595-4. |
[11] |
P. Crispel, P. Degond and M. H. Vignal, A plasma expansion model based on the full Euler-Poisson system, Math. Models Methods Appl. Sci., 17 (2007), 1129-1158.
doi: 10.1142/S0218202507002224. |
[12] |
P. Crispel, P. Degond and M. H. Vignal, Quasi-neutral fluid models for current-carrying plasmas, J. Comput. Phys., 205 (2005), 408-438.
doi: 10.1016/j.jcp.2004.11.011. |
[13] |
P. Crispel, P. Degond and M.-H. Vignal, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasi-neutral limit, J. Comput. Phys., 223 (2007), 208-234.
doi: 10.1016/j.jcp.2006.09.004. |
[14] |
N. Crouseilles and F. Filbet, Numerical approximation of collisional plasmas by high order methods, J. Comput. Phys., 201 (2004), 546-572.
doi: 10.1016/j.jcp.2004.06.007. |
[15] |
J. L. Delcroix and A. Bers, Physique des Plasmas, InterEditions, Paris, 1994. |
[16] |
S. Dellacherie, Contribution à L'analyse et à la Simulation Numérique des Équations Cinétiques Décrivant un Plasma Chaud, PhD thesis, Université Denis Diderot Paris VII, 1998. |
[17] |
S. Dellacherie, Sur un schéma numerique semi-discret appliqué à un opérateur de Fokker-Planck isotrope. C. R. Acad. Sci. Paris Série I Math., 328 (1999), 1219-1224.
doi: 10.1016/S0764-4442(99)80443-1. |
[18] |
S. Dellacherie, C. Buet and R. Sentis, Numerical solution of an ionic Fokker-Planck equation with electronic temperature, SIAM J. Numer. Anal., 39 (2001), 1219-1253.
doi: 10.1137/S0036142999359669. |
[19] |
B. Dubroca and J. L. Feugeas, Entropic moment closure hierarchy for the radiative transfert equation, C. R. Acad. Sci. Paris Séries I, 329 (1999), 915-920.
doi: 10.1016/S0764-4442(00)87499-6. |
[20] |
R. Duclous, B. Dubroca, F. Filbet and V. Tikhonchuk, High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF application, J. Comput. Phys., 228 (2009), 5072-5100.
doi: 10.1016/j.jcp.2009.04.005. |
[21] |
M. Frank, B. Dubroca and A. Klar, Partial moment entropy approximation to radiative transfer, J. Comp. Phys., 218 (2006), 1-18.
doi: 10.1016/j.jcp.2006.01.038. |
[22] |
H. Grad, On kinetic theory of the rarefied gases, Comm. Pure and Appl. Math., 2 (1949), 331-407.
doi: 10.1002/cpa.3160020403. |
[23] |
S. Guisset, S. Brull, E. d'Humière, B. Dubroca, S. Karpov and I. Potapenko, Asymptotic-preserving scheme for the $M_1$-Maxwell system in the quasi-neutral regime,, to appear in Comm. Comput. Phys., ().
|
[24] |
C. Hauck and R. McClarren, Positive $P_N$ closure, SIAM J. Sci. Comput., 32 (2010), 2603-2626.
doi: 10.1137/090764918. |
[25] |
C. Hauck, High-order entropy-based closures for linear transport in slab geometries, Commun. Math. Sci., 9 (2011), 187-205.
doi: 10.4310/CMS.2011.v9.n1.a9. |
[26] |
M. Junk, Domain of definition of Levermore's five-moment system, J. Stat. Phys., 93 (1998), 1143-1167.
doi: 10.1023/B:JOSS.0000033155.07331.d9. |
[27] |
M. Junk, Maximum entropy for reduced moment problems, Math. Models Methods Appl. Sci., 10 (2000), 1001-1025.
doi: 10.1142/S0218202500000513. |
[28] |
E. W. Larsen and G. C. Pomraning, The $P_N$ theory as an asymptotic limit of transport theory in planar geometry - I: Analysis, Nucl. Sci. Eng., {109} (1991), 49-75. |
[29] |
E. W. Larsen and G. C. Pomraning, The $P_N$ theory as an asymptotic limit of transport theory in planar geometry - II: Numerical results, Nucl. Sci. Eng., 109 (1991), 76-85. |
[30] |
D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83 (1996), 1021-1065.
doi: 10.1007/BF02179552. |
[31] |
R. G. McClarren, J. P. Holloway and T. A. Brunner, On solutions to the $P_n$ equations for thermal radiative transfert, J. Comput. Phys., 227 (2008), 2864-2885.
doi: 10.1016/j.jcp.2007.11.027. |
[32] |
R. G. McClarren, J. P. Holloway and T. A. Brunner, Analytic $P_1$ solutions for time dependent, thermal radiative transfert in several geometries, J. Quant. Spec. Rad. Transfer, 109 (2008), 389-403. |
[33] |
J. Mallet, S. Brull and B. Dubroca, An entropic scheme for an angular moment model for the classical Maxwell-Fokker-Planck equation of electrons, Comm. Comput. Phys., 15 (2014), 422-450. |
[34] |
G. N. Minerbo, Maximum entropy Eddington factors, J. Quant. Spectrosc. Radiat. Transfer, 20 (1978), 541-545.
doi: 10.1016/0022-4073(78)90024-9. |
[35] |
J. Schneider, Entropic approximation in kinetic theory, ESAIM: M2AN, 38 (2004), 541-561.
doi: 10.1051/m2an:2004025. |
[36] |
Y. Sentoku and A. J. Kemp, Numerical method for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents, J. Comput. Phys., 227 (2008), 6846-6861.
doi: 10.1016/j.jcp.2008.03.043. |
[37] |
M. Tzoufras, A. R. Bell, P. A. Norreys and F. S. Tsung, A Vlasov-Fokker-Planck code for high energy density physics, J. Comput. Phys., 230 (2011), 6475-6494.
doi: 10.1016/j.jcp.2011.04.034. |
show all references
References:
[1] |
G. Alldredge, C. Hauck and A. L. Tits, High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem, SIAM J. Sci. Comput., 34 (2012), B361-B391.
doi: 10.1137/11084772X. |
[2] |
P. L. Bathnagar, E. P. Gross and M. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-525. |
[3] |
Yu. A. Berezin, V. N. Khudick and M. S. Pekker, Conservative finite-difference schemes for the Fokker-Planck equation not violating the law of an increasing entropy, J. Comput. Phys., 69 (1987), 163-174.
doi: 10.1016/0021-9991(87)90160-4. |
[4] |
S. Brull, Existence of solutions to discrete coagulation-fragmentation equations with transport and diffusion, Annales de la Faculté de Toulouse, 18 (2008), 1-22. |
[5] |
S. Brull, P. Degond, F. Deluzet and A. Mouton, An asymptotic preserving scheme for a bi-fluid Euler-Lorentz system, Kinetic and Related Models, 4 (2011), 991-1023. |
[6] |
C. Buet and S. Cordier, Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation, J. Comput. Phys., 145 (1998), 228-245.
doi: 10.1006/jcph.1998.6015. |
[7] |
C. Buet and S. Cordier, Numerical analysis of conservative and entropy schemes for the Fokker-Planck-Landau equation, SIAM J. Numer Anal., 36 (1999), 953-973.
doi: 10.1137/S0036142997322102. |
[8] |
C. Buet, S. Cordier, P. Degond and M. Lemou, Fast algorithms fot numerical, conservative, and entropy approximations of the Fokker-Planck-Landau equation, J. Comput. Phys., 133 (1997), 310-322.
doi: 10.1006/jcph.1997.5669. |
[9] |
K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley Publishing Company, Reading, Massachusetts, 1967. |
[10] |
F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New York, 1984.
doi: 10.1007/978-1-4757-5595-4. |
[11] |
P. Crispel, P. Degond and M. H. Vignal, A plasma expansion model based on the full Euler-Poisson system, Math. Models Methods Appl. Sci., 17 (2007), 1129-1158.
doi: 10.1142/S0218202507002224. |
[12] |
P. Crispel, P. Degond and M. H. Vignal, Quasi-neutral fluid models for current-carrying plasmas, J. Comput. Phys., 205 (2005), 408-438.
doi: 10.1016/j.jcp.2004.11.011. |
[13] |
P. Crispel, P. Degond and M.-H. Vignal, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasi-neutral limit, J. Comput. Phys., 223 (2007), 208-234.
doi: 10.1016/j.jcp.2006.09.004. |
[14] |
N. Crouseilles and F. Filbet, Numerical approximation of collisional plasmas by high order methods, J. Comput. Phys., 201 (2004), 546-572.
doi: 10.1016/j.jcp.2004.06.007. |
[15] |
J. L. Delcroix and A. Bers, Physique des Plasmas, InterEditions, Paris, 1994. |
[16] |
S. Dellacherie, Contribution à L'analyse et à la Simulation Numérique des Équations Cinétiques Décrivant un Plasma Chaud, PhD thesis, Université Denis Diderot Paris VII, 1998. |
[17] |
S. Dellacherie, Sur un schéma numerique semi-discret appliqué à un opérateur de Fokker-Planck isotrope. C. R. Acad. Sci. Paris Série I Math., 328 (1999), 1219-1224.
doi: 10.1016/S0764-4442(99)80443-1. |
[18] |
S. Dellacherie, C. Buet and R. Sentis, Numerical solution of an ionic Fokker-Planck equation with electronic temperature, SIAM J. Numer. Anal., 39 (2001), 1219-1253.
doi: 10.1137/S0036142999359669. |
[19] |
B. Dubroca and J. L. Feugeas, Entropic moment closure hierarchy for the radiative transfert equation, C. R. Acad. Sci. Paris Séries I, 329 (1999), 915-920.
doi: 10.1016/S0764-4442(00)87499-6. |
[20] |
R. Duclous, B. Dubroca, F. Filbet and V. Tikhonchuk, High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF application, J. Comput. Phys., 228 (2009), 5072-5100.
doi: 10.1016/j.jcp.2009.04.005. |
[21] |
M. Frank, B. Dubroca and A. Klar, Partial moment entropy approximation to radiative transfer, J. Comp. Phys., 218 (2006), 1-18.
doi: 10.1016/j.jcp.2006.01.038. |
[22] |
H. Grad, On kinetic theory of the rarefied gases, Comm. Pure and Appl. Math., 2 (1949), 331-407.
doi: 10.1002/cpa.3160020403. |
[23] |
S. Guisset, S. Brull, E. d'Humière, B. Dubroca, S. Karpov and I. Potapenko, Asymptotic-preserving scheme for the $M_1$-Maxwell system in the quasi-neutral regime,, to appear in Comm. Comput. Phys., ().
|
[24] |
C. Hauck and R. McClarren, Positive $P_N$ closure, SIAM J. Sci. Comput., 32 (2010), 2603-2626.
doi: 10.1137/090764918. |
[25] |
C. Hauck, High-order entropy-based closures for linear transport in slab geometries, Commun. Math. Sci., 9 (2011), 187-205.
doi: 10.4310/CMS.2011.v9.n1.a9. |
[26] |
M. Junk, Domain of definition of Levermore's five-moment system, J. Stat. Phys., 93 (1998), 1143-1167.
doi: 10.1023/B:JOSS.0000033155.07331.d9. |
[27] |
M. Junk, Maximum entropy for reduced moment problems, Math. Models Methods Appl. Sci., 10 (2000), 1001-1025.
doi: 10.1142/S0218202500000513. |
[28] |
E. W. Larsen and G. C. Pomraning, The $P_N$ theory as an asymptotic limit of transport theory in planar geometry - I: Analysis, Nucl. Sci. Eng., {109} (1991), 49-75. |
[29] |
E. W. Larsen and G. C. Pomraning, The $P_N$ theory as an asymptotic limit of transport theory in planar geometry - II: Numerical results, Nucl. Sci. Eng., 109 (1991), 76-85. |
[30] |
D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83 (1996), 1021-1065.
doi: 10.1007/BF02179552. |
[31] |
R. G. McClarren, J. P. Holloway and T. A. Brunner, On solutions to the $P_n$ equations for thermal radiative transfert, J. Comput. Phys., 227 (2008), 2864-2885.
doi: 10.1016/j.jcp.2007.11.027. |
[32] |
R. G. McClarren, J. P. Holloway and T. A. Brunner, Analytic $P_1$ solutions for time dependent, thermal radiative transfert in several geometries, J. Quant. Spec. Rad. Transfer, 109 (2008), 389-403. |
[33] |
J. Mallet, S. Brull and B. Dubroca, An entropic scheme for an angular moment model for the classical Maxwell-Fokker-Planck equation of electrons, Comm. Comput. Phys., 15 (2014), 422-450. |
[34] |
G. N. Minerbo, Maximum entropy Eddington factors, J. Quant. Spectrosc. Radiat. Transfer, 20 (1978), 541-545.
doi: 10.1016/0022-4073(78)90024-9. |
[35] |
J. Schneider, Entropic approximation in kinetic theory, ESAIM: M2AN, 38 (2004), 541-561.
doi: 10.1051/m2an:2004025. |
[36] |
Y. Sentoku and A. J. Kemp, Numerical method for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents, J. Comput. Phys., 227 (2008), 6846-6861.
doi: 10.1016/j.jcp.2008.03.043. |
[37] |
M. Tzoufras, A. R. Bell, P. A. Norreys and F. S. Tsung, A Vlasov-Fokker-Planck code for high energy density physics, J. Comput. Phys., 230 (2011), 6475-6494.
doi: 10.1016/j.jcp.2011.04.034. |
[1] |
Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic and Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044 |
[2] |
Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250 |
[3] |
José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1 |
[4] |
YunKyong Hyon. Hysteretic behavior of a moment-closure approximation for FENE model. Kinetic and Related Models, 2014, 7 (3) : 493-507. doi: 10.3934/krm.2014.7.493 |
[5] |
T. Hillen. On the $L^2$-moment closure of transport equations: The general case. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 299-318. doi: 10.3934/dcdsb.2005.5.299 |
[6] |
Martin Frank, Benjamin Seibold. Optimal prediction for radiative transfer: A new perspective on moment closure. Kinetic and Related Models, 2011, 4 (3) : 717-733. doi: 10.3934/krm.2011.4.717 |
[7] |
T. Hillen. On the $L^2$-moment closure of transport equations: The Cattaneo approximation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 961-982. doi: 10.3934/dcdsb.2004.4.961 |
[8] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: Extension and analysis. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022014 |
[9] |
Zhenning Cai, Yuwei Fan, Ruo Li. On hyperbolicity of 13-moment system. Kinetic and Related Models, 2014, 7 (3) : 415-432. doi: 10.3934/krm.2014.7.415 |
[10] |
Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control and Related Fields, 2020, 10 (1) : 113-140. doi: 10.3934/mcrf.2019032 |
[11] |
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527 |
[12] |
Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215 |
[13] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic and Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[14] |
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 |
[15] |
Florian Schneider, Jochen Kall, Graham Alldredge. A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic and Related Models, 2016, 9 (1) : 193-215. doi: 10.3934/krm.2016.9.193 |
[16] |
Hongjie Dong, Yan Guo, Timur Yastrzhembskiy. Kinetic Fokker-Planck and Landau equations with specular reflection boundary condition. Kinetic and Related Models, 2022, 15 (3) : 467-516. doi: 10.3934/krm.2022003 |
[17] |
T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215 |
[18] |
Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017 |
[19] |
Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016 |
[20] |
Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]