- Previous Article
- KRM Home
- This Issue
-
Next Article
The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis
Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system
1. | Department of Mathematics, Pennsylvania State University, State College, PA 16802 |
2. | Department of Mathematics, The University of Akron, Akron, OH 44325 |
3. | Brown University, Department of Mathematics and Lefschetz Center for Dynamical Systems, Providence, RI 02912 |
References:
[1] |
T. T. Nguyen, T. V. Nguyen and W. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system, Kinetic and Related Models, 8 (2015), 153-168.
doi: 10.3934/krm.2015.8.153. |
show all references
References:
[1] |
T. T. Nguyen, T. V. Nguyen and W. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system, Kinetic and Related Models, 8 (2015), 153-168.
doi: 10.3934/krm.2015.8.153. |
[1] |
Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic and Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153 |
[2] |
Jin Woo Jang, Robert M. Strain, Tak Kwong Wong. Magnetic confinement for the 2D axisymmetric relativistic Vlasov-Maxwell system in an annulus. Kinetic and Related Models, 2022, 15 (4) : 569-604. doi: 10.3934/krm.2021039 |
[3] |
Sergiu Klainerman, Gigliola Staffilani. A new approach to study the Vlasov-Maxwell system. Communications on Pure and Applied Analysis, 2002, 1 (1) : 103-125. doi: 10.3934/cpaa.2002.1.103 |
[4] |
Jonathan Ben-Artzi, Stephen Pankavich, Junyong Zhang. A toy model for the relativistic Vlasov-Maxwell system. Kinetic and Related Models, 2022, 15 (3) : 341-354. doi: 10.3934/krm.2021053 |
[5] |
Mohammad Asadzadeh, Piotr Kowalczyk, Christoffer Standar. On hp-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system. Kinetic and Related Models, 2019, 12 (1) : 105-131. doi: 10.3934/krm.2019005 |
[6] |
Boling Guo, Haiyang Huang. Smooth solution of the generalized system of ferro-magnetic chain. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 729-740. doi: 10.3934/dcds.1999.5.729 |
[7] |
Yunbai Cao, Chanwoo Kim. Glassey-Strauss representation of Vlasov-Maxwell systems in a Half Space. Kinetic and Related Models, 2022, 15 (3) : 385-401. doi: 10.3934/krm.2021034 |
[8] |
Zhiwu Lin. Linear instability of Vlasov-Maxwell systems revisited-A Hamiltonian approach. Kinetic and Related Models, 2022, 15 (4) : 663-679. doi: 10.3934/krm.2021048 |
[9] |
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729 |
[10] |
Yuanjie Lei, Huijiang Zhao. The Vlasov-Maxwell-Boltzmann system near Maxwellians with strong background magnetic field. Kinetic and Related Models, 2020, 13 (3) : 599-621. doi: 10.3934/krm.2020020 |
[11] |
Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237 |
[12] |
Robert Glassey, Stephen Pankavich, Jack Schaeffer. Separated characteristics and global solvability for the one and one-half dimensional Vlasov Maxwell system. Kinetic and Related Models, 2016, 9 (3) : 455-467. doi: 10.3934/krm.2016003 |
[13] |
Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic and Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169 |
[14] |
Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231 |
[15] |
José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327 |
[16] |
Jörg Weber. Confined steady states of the relativistic Vlasov–Maxwell system in an infinitely long cylinder. Kinetic and Related Models, 2020, 13 (6) : 1135-1161. doi: 10.3934/krm.2020040 |
[17] |
Yemin Chen. Smoothness of classical solutions to the Vlasov-Maxwell-Landau system near Maxwellians. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 889-910. doi: 10.3934/dcds.2008.20.889 |
[18] |
Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic and Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005 |
[19] |
Dayton Preissl, Christophe Cheverry, Slim Ibrahim. Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system. Kinetic and Related Models, 2021, 14 (6) : 1035-1079. doi: 10.3934/krm.2021042 |
[20] |
Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]