June  2016, 9(2): 237-249. doi: 10.3934/krm.2016.9.237

Approximating the $M_2$ method by the extended quadrature method of moments for radiative transfer in slab geometry

1. 

Department of Mathematics RWTH Aachen University, Aachen, Germany

2. 

CAPT, LMAM & School of Mathematical Sciences, Peking University, Beijing, China

3. 

School of Mathematical Sciences, Peking University, Beijing, China

Received  January 2015 Revised  October 2015 Published  March 2016

We consider the simplest member of the hierarchy of the extended quadrature method of moments (EQMOM), which gives equations for the zeroth-, first-, and second-order moments of the energy density of photons in the radiative transfer equations in slab geometry. First we show that the equations are well-defined for all moment vectors consistent with a nonnegative underlying distribution, and that the reconstruction is explicit and therefore computationally inexpensive. Second, we show that the resulting moment equations are hyperbolic. These two properties make this moment method quite similar to the attractive but far more expensive $M_2$ method. We confirm through numerical solutions to several benchmark problems that the methods give qualitatively similar results.
Citation: Graham W. Alldredge, Ruo Li, Weiming Li. Approximating the $M_2$ method by the extended quadrature method of moments for radiative transfer in slab geometry. Kinetic and Related Models, 2016, 9 (2) : 237-249. doi: 10.3934/krm.2016.9.237
References:
[1]

G. W. Alldredge, C. D. Hauck, D. P. O'Leary and A. L. Tits, Adaptive change of basis in entropy-based moment closures for linear kinetic equations, Journal of Computational Physics, 258 (2014), 489-508. doi: 10.1016/j.jcp.2013.10.049.

[2]

G. W. Alldredge, C. D. Hauck and A. L. Tits, High-order entropy-based closures for linear transport in slab geometry ii: A computational study of the optimization problem, SIAM Journal on Scientific Computing, 34 (2012), B361-B391. doi: 10.1137/11084772X.

[3]

C. Berthon, P. Charrier and B. Dubroca, An hllc scheme to solve the $M_1$ model of radiative transfer in two space dimensions, Journal of Scientific Computing, 31 (2007), 347-389. doi: 10.1007/s10915-006-9108-6.

[4]

T. A. Brunner, Forms of Approximate Radiation Transport, Tech. Rep SAND2002-1778, 2002.

[5]

T. A. Brunner and J. P. Holloway, One-dimensional riemann solvers and the maximum entropy closure, Journal of Quantitative Spectroscopy and Radiative Transfer, 69 (2001), 543-566. doi: 10.1016/S0022-4073(00)00099-6.

[6]

R. Curto and L. Fialkow, Recursiveness, positivity and truncated moment problems, Houston J. Math, 17 (1991), 603-635.

[7]

B. Dubroca and J.-L. Fuegas, Étude théorique et numérique d'une hiérarchie de modèles aus moments pour le transfert radiatif, C.R. Acad. Sci. Paris, I. 329 (1999), 915-920. doi: 10.1016/S0764-4442(00)87499-6.

[8]

C. K. Garrett, C. Hauck and J. Hill, Optimization and large scale computation of an entropy-based moment closure, Journal of Computational Physics, 302 (2015), 573-590.

[9]

C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021-1065. doi: 10.1007/BF02179552.

[10]

E. E. Lewis and W. F. Miller, Jr, Computational Methods in Neutron Transport, John Wiley and Sons, New York, 1984.

[11]

R. G. McClarren, J. P. Holloway and T. A. Brunner, On solutions to the $P_n$ equations for thermal radiative transfer, Journal of Computational Physics, 227 (2008), 2864-2885. doi: 10.1016/j.jcp.2007.11.027.

[12]

E. Olbrant, C. D. Hauck and M. Frank, A realizability-preserving discontinuous galerkin method for the m1 model of radiative transfer, Journal of Computational Physics, 231 (2012), 5612-5639. doi: 10.1016/j.jcp.2012.03.002.

[13]

G. C. Pomraning, The Equations of Radiation Hydrodynamics, Courier Dover Publications, 1973.

[14]

B. Su and G. L. Olson, An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium, Annals of Nuclear Energy, 24 (1997), 1035-1055. doi: 10.1016/S0306-4549(96)00100-4.

[15]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer Science & Business Media, 2009. doi: 10.1007/b79761.

[16]

V. Vikas, C. D. Hauck, Z. J. Wang and R. O. Fox, Radiation transport modeling using extended quadrature method of moments, Journal of Computational Physics, 246 (2013), 221-241. doi: 10.1016/j.jcp.2013.03.028.

show all references

References:
[1]

G. W. Alldredge, C. D. Hauck, D. P. O'Leary and A. L. Tits, Adaptive change of basis in entropy-based moment closures for linear kinetic equations, Journal of Computational Physics, 258 (2014), 489-508. doi: 10.1016/j.jcp.2013.10.049.

[2]

G. W. Alldredge, C. D. Hauck and A. L. Tits, High-order entropy-based closures for linear transport in slab geometry ii: A computational study of the optimization problem, SIAM Journal on Scientific Computing, 34 (2012), B361-B391. doi: 10.1137/11084772X.

[3]

C. Berthon, P. Charrier and B. Dubroca, An hllc scheme to solve the $M_1$ model of radiative transfer in two space dimensions, Journal of Scientific Computing, 31 (2007), 347-389. doi: 10.1007/s10915-006-9108-6.

[4]

T. A. Brunner, Forms of Approximate Radiation Transport, Tech. Rep SAND2002-1778, 2002.

[5]

T. A. Brunner and J. P. Holloway, One-dimensional riemann solvers and the maximum entropy closure, Journal of Quantitative Spectroscopy and Radiative Transfer, 69 (2001), 543-566. doi: 10.1016/S0022-4073(00)00099-6.

[6]

R. Curto and L. Fialkow, Recursiveness, positivity and truncated moment problems, Houston J. Math, 17 (1991), 603-635.

[7]

B. Dubroca and J.-L. Fuegas, Étude théorique et numérique d'une hiérarchie de modèles aus moments pour le transfert radiatif, C.R. Acad. Sci. Paris, I. 329 (1999), 915-920. doi: 10.1016/S0764-4442(00)87499-6.

[8]

C. K. Garrett, C. Hauck and J. Hill, Optimization and large scale computation of an entropy-based moment closure, Journal of Computational Physics, 302 (2015), 573-590.

[9]

C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021-1065. doi: 10.1007/BF02179552.

[10]

E. E. Lewis and W. F. Miller, Jr, Computational Methods in Neutron Transport, John Wiley and Sons, New York, 1984.

[11]

R. G. McClarren, J. P. Holloway and T. A. Brunner, On solutions to the $P_n$ equations for thermal radiative transfer, Journal of Computational Physics, 227 (2008), 2864-2885. doi: 10.1016/j.jcp.2007.11.027.

[12]

E. Olbrant, C. D. Hauck and M. Frank, A realizability-preserving discontinuous galerkin method for the m1 model of radiative transfer, Journal of Computational Physics, 231 (2012), 5612-5639. doi: 10.1016/j.jcp.2012.03.002.

[13]

G. C. Pomraning, The Equations of Radiation Hydrodynamics, Courier Dover Publications, 1973.

[14]

B. Su and G. L. Olson, An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium, Annals of Nuclear Energy, 24 (1997), 1035-1055. doi: 10.1016/S0306-4549(96)00100-4.

[15]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer Science & Business Media, 2009. doi: 10.1007/b79761.

[16]

V. Vikas, C. D. Hauck, Z. J. Wang and R. O. Fox, Radiation transport modeling using extended quadrature method of moments, Journal of Computational Physics, 246 (2013), 221-241. doi: 10.1016/j.jcp.2013.03.028.

[1]

Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic and Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533

[2]

Florian Schneider. Second-order mixed-moment model with differentiable ansatz function in slab geometry. Kinetic and Related Models, 2018, 11 (5) : 1255-1276. doi: 10.3934/krm.2018049

[3]

Martin Frank, Cory D. Hauck, Edgar Olbrant. Perturbed, entropy-based closure for radiative transfer. Kinetic and Related Models, 2013, 6 (3) : 557-587. doi: 10.3934/krm.2013.6.557

[4]

Martin Frank, Benjamin Seibold. Optimal prediction for radiative transfer: A new perspective on moment closure. Kinetic and Related Models, 2011, 4 (3) : 717-733. doi: 10.3934/krm.2011.4.717

[5]

Florian Schneider, Jochen Kall, Graham Alldredge. A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic and Related Models, 2016, 9 (1) : 193-215. doi: 10.3934/krm.2016.9.193

[6]

Zbigniew Banach, Wieslaw Larecki. Entropy-based mixed three-moment description of fermionic radiation transport in slab and spherical geometries. Kinetic and Related Models, 2017, 10 (4) : 879-900. doi: 10.3934/krm.2017035

[7]

J-F. Clouët, R. Sentis. Milne problem for non-grey radiative transfer. Kinetic and Related Models, 2009, 2 (2) : 345-362. doi: 10.3934/krm.2009.2.345

[8]

Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic and Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467

[9]

Grégoire Allaire, Zakaria Habibi. Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 1-36. doi: 10.3934/dcdsb.2013.18.1

[10]

Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control and Related Fields, 2020, 10 (1) : 113-140. doi: 10.3934/mcrf.2019032

[11]

I-Kun Chen, Daisuke Kawagoe. Propagation of boundary-induced discontinuity in stationary radiative transfer and its application to the optical tomography. Inverse Problems and Imaging, 2019, 13 (2) : 337-351. doi: 10.3934/ipi.2019017

[12]

Byung-Hoon Hwang, Seok-Bae Yun. Stationary solutions to the boundary value problem for the relativistic BGK model in a slab. Kinetic and Related Models, 2019, 12 (4) : 749-764. doi: 10.3934/krm.2019029

[13]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[14]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic and Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

[15]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[16]

Joseph A. Biello, Peter R. Kramer, Yuri Lvov. Stages of energy transfer in the FPU model. Conference Publications, 2003, 2003 (Special) : 113-122. doi: 10.3934/proc.2003.2003.113

[17]

Miroslava Růžičková, Irada Dzhalladova, Jitka Laitochová, Josef Diblík. Solution to a stochastic pursuit model using moment equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 473-485. doi: 10.3934/dcdsb.2018032

[18]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic and Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[19]

Asim Aziz, Wasim Jamshed, Yasir Ali, Moniba Shams. Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2667-2690. doi: 10.3934/dcdss.2020142

[20]

YunKyong Hyon. Hysteretic behavior of a moment-closure approximation for FENE model. Kinetic and Related Models, 2014, 7 (3) : 493-507. doi: 10.3934/krm.2014.7.493

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (227)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]