Citation: |
[1] |
J. Bertoin, The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc. (JEMS), 5 (2003), 395-416.doi: 10.1007/s10097-003-0055-3. |
[2] |
J. Bertoin, Random Fragmentation and Coagulation Processes, Cambridge Studies in Advanced Mathematics, 102, Cambridge University Press, Cambridge, 2006.doi: 10.1017/CBO9780511617768. |
[3] |
J. Bertoin and A. R. Watson, Probabilistic aspects of critical growth-fragmentation equations, preprint, arXiv:1506.09187. |
[4] |
T. Bourgeron, M. Doumic and M. Escobedo, Estimating the division rate of the growth-fragmentation equation with a self-similar kernel, Inverse Problems, 30 (2014), 025007, 28 pp.doi: 10.1088/0266-5611/30/2/025007. |
[5] |
M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, Journal de Mathèmatiques Pures et Appliquèes, 96 (2011), 334-362.doi: 10.1016/j.matpur.2011.01.003. |
[6] |
V. Calvez, N. Lenuzza, M. Doumic, J.-P. Deslys, F. Mouthon and B. Perthame, Prion dynamic with size dependency - strain phenomena, J. of Biol. Dyn., 4 (2010), 28-42.doi: 10.1080/17513750902935208. |
[7] |
M. Doumic and P. Gabriel, Eigenelements of a general aggregation-fragmentation model, Mathematical Models and Methods in Applied Sciences, 20 (2010), 757-783.doi: 10.1142/S021820251000443X. |
[8] |
R. Drake, A general mathematical survey of the coagulation equation, Topics in Current Aerosol Research (Part 2), (1972), 201-376.doi: 10.1016/B978-0-08-016809-8.50003-6. |
[9] |
M. Escobedo, S. Mischler and M. Rodriguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99-125.doi: 10.1016/j.anihpc.2004.06.001. |
[10] |
A. G. Fredrickson, D. Ramkrishna and H. Tsuchiya, Statistics and dynamics of procaryotic cell populations, Math. Biosci., 1 (1967), 327-374.doi: 10.1016/0025-5564(67)90008-9. |
[11] |
B. Haas, Loss of mass in deterministic and random fragmentations, Stochastic Processes and their Applications, 106 (2003), 245-277.doi: 10.1016/S0304-4149(03)00045-0. |
[12] |
B. Haas, Asymptotic behavior of solutions of the fragmentation equation with shattering: An approach via self-similar Markov processes, Ann. Appl. Probab., 20 (2010), 382-429.doi: 10.1214/09-AAP622. |
[13] |
E. Hewitt and K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Springer-Verlag, New York, 1965.doi: 10.1007/978-3-662-29794-0. |
[14] |
P. Michel, Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., 16 (2006), 1125-1153.doi: 10.1142/S0218202506001480. |
[15] |
S. Mischler and J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, Annales de l'Institut Henri Poincaré (C) Non Linear Analysis (2015), in press.doi: 10.1016/j.anihpc.2015.01.007. |
[16] |
L. Robert, M. Hoffmann, N. Krell, S. Aymerich, J. Robert and M. Doumic, Division in escherichia coli is triggered by a size-sensing rather than a timing mechanism, BMC Biology, 12 (2014), p17.doi: 10.1186/1741-7007-12-17. |
[17] |
J. Sinko and W. Streifer, A new model for age-size structure of a population, Ecology, 48 (1967), 910-918. |