\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system

Abstract Related Papers Cited by
  • Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system near the relativistic Maxwellian are constructed based on an approach by combining the compensating function and energy method. In addition, an exponential rate in time of the solution to its equilibrium is obtained.
    Mathematics Subject Classification: Primary: 82D10; Secondary: 35Q84.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Bostan and Th. Goudon, Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system: the one and one half dimensional case, Kinet. Relat. Models, 1 (2008), 139-170.doi: 10.3934/krm.2008.1.139.

    [2]

    F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Func. Anal., 111 (1993), 239-258.doi: 10.1006/jfan.1993.1011.

    [3]

    A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation, Math. Methods Appl. Sci., 21 (1998), 985-1014.doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B.

    [4]

    J.-A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces, Math. Methods Appl. Sci., 18 (1995), 825-839.doi: 10.1002/mma.1670181006.

    [5]

    J.-A. Carrillo, J. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Func. Anal., 141 (1996), 99-132.doi: 10.1006/jfan.1996.0123.

    [6]

    M. Chae, The global classical solution of the Vlasov-Maxwell-Fokker-Planck system near Maxwellian, Math. Models Methods Appl. Sci., 21 (2011), 1007-1025.doi: 10.1142/S0218202511005222.

    [7]

    R. DiPerna and P.-L. Lions, Global weak solutions of kinetic equations, Rend. Sem. Mat. Univ. Politec. Torino, 46 (1988), 259-288.

    [8]

    R.-J. Duan and S.-Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff, Comm. Math. Phys., 324 (2013), 1-45.

    [9]

    R.-J. Duan and R.-M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $R^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328.doi: 10.1007/s00205-010-0318-6.

    [10]

    R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differential Equations, 252 (2012), 6356-6386.doi: 10.1016/j.jde.2012.03.012.

    [11]

    R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.doi: 10.1137/1.9781611971477.

    [12]

    Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.doi: 10.1002/cpa.10040.

    [13]

    L. Hsiao, F.-C. Li and S. Wang, Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system, Commun. Pure Appl. Anal., 7 (2008), 579-589.doi: 10.3934/cpaa.2008.7.579.

    [14]

    H.-J Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681-691.doi: 10.3934/dcdsb.2013.18.681.

    [15]

    S. Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320.doi: 10.1007/BF03167846.

    [16]

    R. Lai, On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity, Math. Meth. Appl. Sci., 21 (1998), 1287-1296.doi: 10.1002/(SICI)1099-1476(19980925)21:14<1287::AID-MMA996>3.0.CO;2-G.

    [17]

    S.-Q. Liu and H.-J. Zhao, Optimal large-time decay of the relativistic Landau-Maxwell system, J. Differential Equations, 256 (2014), 832-857.doi: 10.1016/j.jde.2013.10.004.

    [18]

    B. O'Dwyer and H.-D. Victory Jr., On classical solutions of the Vlasov-Poisson-Fokker-Planck system, Indiana Univ. Math. J., 39 (1990), 105-156.doi: 10.1512/iumj.1990.39.39009.

    [19]

    G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations, 99 (1992), 59-77.doi: 10.1016/0022-0396(92)90135-A.

    [20]

    R.-M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys., 251 (2004), 263-320.doi: 10.1007/s00220-004-1151-2.

    [21]

    H.-D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, J. Math. Anal. Appl., 160 (1991), 525-555.doi: 10.1016/0022-247X(91)90324-S.

    [22]

    C. Villani, Hypocoercivity, Memoirs Amer. Math. Soc., 202 (2009), iv+141 pp.doi: 10.1090/S0065-9266-09-00567-5.

    [23]

    T. Yang, and H.-J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential Equations, 248 (2010), 1518-1560.doi: 10.1016/j.jde.2009.11.027.

    [24]

    T. Yang and H.-J. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system, SIAM J. Math. Anal., 42 (2010), 459-488.doi: 10.1137/090755796.

    [25]

    T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605.doi: 10.1007/s00220-006-0103-4.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(201) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return