\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic preserving scheme for a kinetic model describing incompressible fluids

Abstract Related Papers Cited by
  • The kinetic theory of fluid turbulence modeling developed by Degond and Lemou in [7] is considered for further study, analysis and simulation. Starting with the Boltzmann like equation representation for turbulence modeling, a relaxation type collision term is introduced for isotropic turbulence. In order to describe some important turbulence phenomenology, the relaxation time incorporates a dependency on the turbulent microscopic energy and this makes difficult the construction of efficient numerical methods. To investigate this problem, we focus here on a multi-dimensional prototype model and first propose an appropriate change of frame that makes the numerical study simpler. Then, a numerical strategy to tackle the stiff relaxation source term is introduced in the spirit of Asymptotic Preserving Schemes. Numerical tests are performed in a one-dimensional framework on the basis of the developed strategy to confirm its efficiency.
    Mathematics Subject Classification: 65M99, 65L04, 76B99, 76F05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Bennoune, M. Lemou and L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving compressible Navier-Stokes asymptotics, J. Comput. Phys., 227 (2008), 3781-3803.doi: 10.1016/j.jcp.2007.11.032.

    [2]

    F. Bouchut and B. Perthame, The BGK model for small Prandtl number in the Navier-Stokes approximation, J. Stat. Phys., 71 (1993), 191-207.doi: 10.1007/BF01048094.

    [3]

    Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations, 25 (2000), 737-754.doi: 10.1080/03605300008821529.

    [4]

    H. Chen, S. Kandasamy, S. Orzag, R. Shock, S. Succi and V. Yakhot, Extended Boltzmann kinetic equation for turbulent flows, Science Magazine, 301 (2003), 633-636.doi: 10.1126/science.1085048.

    [5]

    F. Coron and B. Perthame, Numerical passage from kinetic to fluid equations, SIAM J. Numer. Anal., 28 (1991), 26-42.doi: 10.1137/0728002.

    [6]

    N. Crouseilles and M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits, Kinetic Related Models, 4 (2011), 441-477.doi: 10.3934/krm.2011.4.441.

    [7]

    P. Degond and M. Lemou, Turbulence models for incompressible fluids derived from kinetic theory, J. Math. Fluid Mech., 4 (2002), 257-284.doi: 10.1007/s00021-002-8545-8.

    [8]

    P. Degond and M. Lemou, On viscosity and termal conduction of fluids with multivalued internal energy, Eur. J. Mech. B-Fluids, 20 (2001), 303-327.doi: 10.1016/S0997-7546(00)01095-5.

    [9]

    P. Degond and P. F. Peyrard, Un modèle de collisions ondes-particules en physique des plasmas: Application la dynamique des gaz, C. R. Acad. Sci. Paris, Ser I, 323 (1996), 209-214.

    [10]

    P. Degond, J. L. López and P. F. Peyrard, On the macroscopic dynamics induced by a model wave-particle collision operator, Continuum Mechanics and Thermodynamics, 10 (1998), 153-178.doi: 10.1007/s001610050087.

    [11]

    P. Degond, J.L. López, F. Poupaud and C. Schmeiser, Existence of solutions of a kinetic equation modeling cometary flows, J. Stat. Phys., 96 (1999), 361-376.doi: 10.1023/A:1004584719071.

    [12]

    G. Dimarco and L. Pareschi, Asymptotic preserving implicit-explicit Runge-Kutta methods for non-linear kinetic equations, SIAM Journal of Numerical Analysis, 51 (2013), 1064-1087.doi: 10.1137/12087606X.

    [13]

    G. Dimarco and L. Pareschi, Exponential Runge-Kutta methods for stiff kinetic equations, SIAM Journal of Numerical Analysis, 49 (2011), 2057-2077.doi: 10.1137/100811052.

    [14]

    J. Earl, J. R. Jokipii and G. Morfill, Cosmic ray viscosity, Astrophysical Journal, 331 (1988), L91-L94.doi: 10.1086/185242.

    [15]

    F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, J. of Comput. Phys., 229 (2010), 7625-7648.doi: 10.1016/j.jcp.2010.06.017.

    [16]

    S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM Journal on Scientific Computing, 21 (1999), 441-454.doi: 10.1137/S1064827598334599.

    [17]

    A. Klar and C. Schmeiser, Numerical passage from radiative heat transfer to nonlinear diffusion models, Math. Models Methods Appl. Sci., 11 (2001), 749-767.doi: 10.1142/S0218202501001082.

    [18]

    M. Lemou, Relaxed micro-macro schemes for kinetic equations, C.R. Acad. Sci. Paris, Ser. I, 348 (2010), 455-460.doi: 10.1016/j.crma.2010.02.017.

    [19]

    M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31 (2008), 334-368.doi: 10.1137/07069479X.

    [20]

    L. Mieussens and H. Struchtrup, Numerical comparison of BGK-models with proper Prandtl number, Phys. Fluids, 16 (2004), 2797-2813.

    [21]

    S. Pieraccini and G. Puppo, Implicit-explicit schemes for BGK kinetic equations, Journal of Scientific Computing, 32 (2007), 1-28.doi: 10.1007/s10915-006-9116-6.

    [22]

    S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.doi: 10.1017/CBO9780511840531.

    [23]

    H. Struchtrup, The BGK-model with velocity-dependent collision time, Cont. Mech. Thermodyn., 9 (1997), 23-31.doi: 10.1007/s001610050053.

    [24]

    D. C. Wilcox, Turbulence Modeling for CFD, D.C.W. Industries Inc., California, 1994.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(157) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return