September  2016, 9(3): 429-441. doi: 10.3934/krm.2016001

A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions

1. 

Department of Mathematics, South China University of Technology, Guangzhou 510641, China, China

Received  November 2015 Revised  December 2015 Published  May 2016

In this paper, we establish a new blowup criterion for the strong solutions in a smooth bounded domain $\Omega\subset\mathbb{R}^3$. In [13], Wen, Yao, and Zhu prove that if the strong solutions blow up at finite time $T^*$, the mass in $L^\infty(\Omega)$ norm must concentrate at $T^*$. Here we extend Wen, Yao, and Zhu's work in the sense of the concentration of mass in $BMO(\Omega)$ norm at $T^*$. The method can be applied to study the blow-up criterion in terms of the concentration of density in $BMO(\Omega)$ norm for the strong solutions to compressible Navier-Stokes equations in smooth bounded domains. Therefore, as a byproduct, we can also improves the corresponding result about Navier-Stokes equations in [11]. Moreover, the appearance of vacuum is allowed in the paper.
Citation: Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic and Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001
References:
[1]

P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269. doi: 10.1007/BF01759640.

[2]

H. B. Cui, H. Y. Wen and H. Y. Yin, Global classical solutions of viscous liquid-gas two-phase flow model, Math. Meth. Appl. Sci., 36 (2013), 567-583. doi: 10.1002/mma.2614.

[3]

S. Evje, T. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum, Nonlinear Anal., TMA, 70 (2009), 3864-3886. doi: 10.1016/j.na.2008.07.043.

[4]

S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differential Equations, 245 (2008), 2660-2703. doi: 10.1016/j.jde.2007.10.032.

[5]

S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, Commun. Pure Appl. Anal., 8 (2009), 1867-1894. doi: 10.3934/cpaa.2009.8.1867.

[6]

Z. H. Guo, J. Yang and L. Yao, Global strong solution for a three-dimensional viscous liquid-gas two-phase flowmodelwith vacuum, Journal of Mathematical Physics, 52 (2011), 093102, 14pp.

[7]

C. C. Hao and H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332. doi: 10.1137/110851602.

[8]

M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975.

[9]

O. A. Ladyzenskaja, V. A. Solonikov and N. N. Ural'ceva, Linear and Quasilinear Equation of Parabolic Type, Amer. Math. Soc., Providence RI, 1968.

[10]

A. Prosperetti and G. Tryggvason (Editors), Computational Methods for Multiphase Flow, Cambridge University Press, Cambridge, 2009.

[11]

Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47. doi: 10.1016/j.matpur.2010.08.001.

[12]

V. A. Vaigant and A. V. Kazhikhov, On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscosity fluid, Siberian Math. J., 36 (1995), 1108-1141. doi: 10.1007/BF02106835.

[13]

H. Y. Wen, L. Yao and C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum, J.Math.Pures Appl., 97 (2012), 204-229. doi: 10.1016/j.matpur.2011.09.005.

[14]

H. Y. Wen and C. J. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Advances in Mathematics, 248 (2013), 534-572. doi: 10.1016/j.aim.2013.07.018.

[15]

L. Yao and C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differential Equations, 247 (2009), 2705-2739. doi: 10.1016/j.jde.2009.07.013.

[16]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928. doi: 10.1007/s00208-010-0544-0.

[17]

L. Yao, T. Zhang and C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42 (2010), 1874-1897. doi: 10.1137/100785302.

[18]

L. Yao, T. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model, J. Differential Equations, 250 (2011), 3362-3378. doi: 10.1016/j.jde.2010.12.006.

show all references

References:
[1]

P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269. doi: 10.1007/BF01759640.

[2]

H. B. Cui, H. Y. Wen and H. Y. Yin, Global classical solutions of viscous liquid-gas two-phase flow model, Math. Meth. Appl. Sci., 36 (2013), 567-583. doi: 10.1002/mma.2614.

[3]

S. Evje, T. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum, Nonlinear Anal., TMA, 70 (2009), 3864-3886. doi: 10.1016/j.na.2008.07.043.

[4]

S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differential Equations, 245 (2008), 2660-2703. doi: 10.1016/j.jde.2007.10.032.

[5]

S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, Commun. Pure Appl. Anal., 8 (2009), 1867-1894. doi: 10.3934/cpaa.2009.8.1867.

[6]

Z. H. Guo, J. Yang and L. Yao, Global strong solution for a three-dimensional viscous liquid-gas two-phase flowmodelwith vacuum, Journal of Mathematical Physics, 52 (2011), 093102, 14pp.

[7]

C. C. Hao and H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332. doi: 10.1137/110851602.

[8]

M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975.

[9]

O. A. Ladyzenskaja, V. A. Solonikov and N. N. Ural'ceva, Linear and Quasilinear Equation of Parabolic Type, Amer. Math. Soc., Providence RI, 1968.

[10]

A. Prosperetti and G. Tryggvason (Editors), Computational Methods for Multiphase Flow, Cambridge University Press, Cambridge, 2009.

[11]

Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47. doi: 10.1016/j.matpur.2010.08.001.

[12]

V. A. Vaigant and A. V. Kazhikhov, On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscosity fluid, Siberian Math. J., 36 (1995), 1108-1141. doi: 10.1007/BF02106835.

[13]

H. Y. Wen, L. Yao and C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum, J.Math.Pures Appl., 97 (2012), 204-229. doi: 10.1016/j.matpur.2011.09.005.

[14]

H. Y. Wen and C. J. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Advances in Mathematics, 248 (2013), 534-572. doi: 10.1016/j.aim.2013.07.018.

[15]

L. Yao and C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differential Equations, 247 (2009), 2705-2739. doi: 10.1016/j.jde.2009.07.013.

[16]

L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928. doi: 10.1007/s00208-010-0544-0.

[17]

L. Yao, T. Zhang and C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42 (2010), 1874-1897. doi: 10.1137/100785302.

[18]

L. Yao, T. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model, J. Differential Equations, 250 (2011), 3362-3378. doi: 10.1016/j.jde.2010.12.006.

[1]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[2]

Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021

[3]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[4]

Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146

[5]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[6]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[7]

Qinglong Zhang. Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3235-3258. doi: 10.3934/cpaa.2021104

[8]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[9]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198

[10]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[11]

Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110

[12]

Steinar Evje, Kenneth Hvistendahl Karlsen. Global weak solutions for a viscous liquid-gas model with singular pressure law. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1867-1894. doi: 10.3934/cpaa.2009.8.1867

[13]

Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541

[14]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[15]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[16]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[17]

Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016

[18]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[19]

Zhen Cheng, Wenjun Wang. The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4155-4176. doi: 10.3934/cpaa.2021151

[20]

Helmut Abels, Yutaka Terasawa. Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1871-1881. doi: 10.3934/dcdss.2022117

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (150)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]