\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Entropy production for ellipsoidal BGK model of the Boltzmann equation

Abstract Related Papers Cited by
  • The ellipsoidal BGK model (ES-BGK) is a generalized version of the original BGK model, designed to yield the correct Prandtl number in the Navier-Stokes limit. In this paper, we make two observations on the entropy production functional of the ES-BGK model. First, we show that the Cercignani type estimate holds for the ES-BGK model in the whole range of relaxation parameter $-1/2<\nu<1$. Secondly, we observe that the ellipsoidal relaxation operator satisfies an unexpected sign-definite property. Some implications of these observations are also discussed.
    Mathematics Subject Classification: Primary: 35Q20, 82C40; Secondary: 35B45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Andries, J.-F. Bourgat, P. Le Tallec and B. Perthame, Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases, Comput. Methods Appl. Mech. Engrg., 191 (2002), 3369-3390.doi: 10.1016/S0045-7825(02)00253-0.

    [2]

    P. Andries, P. Le Tallec, J.-P.Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B Fluids, 19 (2000), 813-830.doi: 10.1016/S0997-7546(00)01103-1.

    [3]

    K. Aoki, K. Kanba and S. Takata, Numerical analysis of a supersonic rarefied gas flow past a flat plate, Phys. Fluids, 9 (1997), p1144.doi: 10.1063/1.869204.

    [4]

    F. Berthelin and A. Vasseur, From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. Math. Anal., 36 (2005), 1807-1835.doi: 10.1137/S0036141003431554.

    [5]

    A. Bellouquid, Global existence and large-time behavior for BGK model for a gas with non-constant cross section, Transport Theory Statist. Phys., 32 (2003), 157-184.doi: 10.1081/TT-120019041.

    [6]

    P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. Small amplitude process in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.doi: 10.1103/PhysRev.94.511.

    [7]

    G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Engineering Science, The Clarendon Press, Oxford University Press, New York, 1995.

    [8]

    M. Bisi, J. A. Cañizo and B. Lods, Entropy dissipation estimates for the linear Boltzmann operator, J. Funct. Anal., 269 (2015), 1028-1069.doi: 10.1016/j.jfa.2015.05.002.

    [9]

    A. V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation, J. Statist. Phys., 94 (1999), 603-618.doi: 10.1023/A:1004537522686.

    [10]

    R. Bosi and M. J. Cáceres, The BGK model with external confining potential: Existence, long-time behaviour and time-periodic Maxwellian equilibria, J. Stat. Phys., 136 (2009), 297-330.doi: 10.1007/s10955-009-9782-5.

    [11]

    S. Brull, An ellipsoidal statistical model for gas mixtures, Comm. Math Sci., 13 (2015), 1-13.doi: 10.4310/CMS.2015.v13.n1.a1.

    [12]

    S. Brull and J. Schneider, A new approach of the ellipsoidal statistical model, Cont. Mech. Thermodyn., 20 (2008), 63-74.doi: 10.1007/s00161-008-0068-y.

    [13]

    C. Cercignani, The Boltzmann Equation and Its Application, Springer-Verlag, 1988.doi: 10.1007/978-1-4612-1039-9.

    [14]

    C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, 1994.doi: 10.1007/978-1-4419-8524-8.

    [15]

    C. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1990.doi: 10.1119/1.1942035.

    [16]

    W. M. Chan, An Energy Method for the BGK Model, M. Phil thesis, City University of Hong Kong, 2007.

    [17]

    J. Dolbeault, P. Markowich, D. Oelz and C. Schmeiser, Non linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech, Anal., 186 (2007), 133-158.doi: 10.1007/s00205-007-0049-5.

    [18]

    R. DiPerna and P.-L. Lions, On the Cauchy problem for the Boltzmann equation: Global existence and weak stability. Ann. Math., 130 (1989), 321-366.doi: 10.2307/1971423.

    [19]

    F. Filbet and S. Jin, An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation, J. Sci. Comput., 46 (2011), 204-224.doi: 10.1007/s10915-010-9394-x.

    [20]

    F. Filbet and G. Russo, Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics, Kinet. Relat. Models, 2 (2009), 231-250.doi: 10.3934/krm.2009.2.231.

    [21]

    M. A. Galli and R. Torczynski, Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls, Phys. Fluids, 23 (2011), 030601.doi: 10.1063/1.3558869.

    [22]

    R. Glassey, The Cauchy Problems in Kinetic Theory, SIAM, 1996.doi: 10.1137/1.9781611971477.

    [23]

    L. H. Holway, Kinetic theory of shock structure using and ellipsoidal distribution function. Rarefied Gas Dynamics, Vol. I (Proc. Fourth Internat. Sympos., Univ. Toronto, 1964), Academic Press, New York, (1966), 193-215.

    [24]

    D. Issautier, Convergence of a weighted particle method for solving the Boltzmann (B.G,K.) equaiton, SIAM Journal on Numerical Analysis, 33, (1996), 2099-2119.doi: 10.1137/S0036142994266856.

    [25]

    S. K. Loyalka, N. Petrellis and T. S. Storvick, Some exact numerical results for the BGK model: Couette, Poiseuille and thermal creep flow between parallel plates, Z. Angew. Math. Phys., 30 (1979), 514-521.doi: 10.1007/BF01588895.

    [26]

    A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.doi: 10.1007/s00205-010-0354-2.

    [27]

    S. Mischler, Uniqueness for the BGK-equation in $R^n$ and the rate of convergence for a semi-discrete scheme, Differential integral Equations, 9 (1996), 1119-1138.

    [28]

    L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci., 10 (2000), 1121-1149.doi: 10.1142/S0218202500000562.

    [29]

    L. Mieussens and H. Struchtrup, Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number, Phys. Fluids, 16 (2004), p2797.doi: 10.1063/1.1758217.

    [30]

    S. Park and S.-B. Yun, Cauchy problem for the ellipsoidal-BGK model of the Boltzmann equation, submitted.

    [31]

    B. Perthame, Global existence to the BGK model of Boltzmann equation, J. Differential Equations, 82 (1989), 191-205.doi: 10.1016/0022-0396(89)90173-3.

    [32]

    B. Perthame and M. Pulvirenti, Weighted $L^{\infty}$ bounds and uniqueness for the Boltzmann BGK model, Arch. Rational Mech. Anal., 125 (1993), 289-295.doi: 10.1007/BF00383223.

    [33]

    S. Pieraccini and G. Puppo, Implicit-explicit schemes for BGK kinetic equations, J. Sci. Comput., 32 (2007), 1-28.doi: 10.1007/s10915-006-9116-6.

    [34]

    G. Russo, P. Santagati and S.-B. Yun, Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation, SIAM J. Numer. Anal., 50 (2012), 1111-1135.doi: 10.1137/100800348.

    [35]

    L. Saint-Raymond, From the BGK model to the Navier-Stokes equations, Ann. Sci. Ecole Norm. Sup., 36 (2003), 271-317.doi: 10.1016/S0012-9593(03)00010-7.

    [36]

    L. Saint-Raymond, Discrete time Navier-Stokes limit for the BGK Boltzmann equation, Comm. Partial Differential Equations, 27 (2002), 149-184.doi: 10.1081/PDE-120002785.

    [37]

    Y. Sone, Kinetic Theory and Fluid Mechanics, Boston: Birkhäuser, 2002.doi: 10.1007/978-1-4612-0061-1.

    [38]

    Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Boston: Brikhäuser, 2006.doi: 10.1007/978-0-8176-4573-1.

    [39]

    H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory, Springer. 2005.doi: 10.1007/3-540-32386-4.

    [40]

    G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys., 203 (1999), 667-706.doi: 10.1007/s002200050631.

    [41]

    S. Ukai, Stationary solutions of the BGK model equation on a finite interval with large boundary data, Transport theory Statist. Phys., 21 (1992), 487-500.doi: 10.1080/00411459208203795.

    [42]

    S. Ukai and T. Yang, Mathematical Theory of Boltzmann equation, Lecture Notes Series. no. 8, Liu Bie Ju Center for Math. Sci, City University of Hong Kong, 2006.

    [43]

    C. Villani, A Review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I. North-Holland. Amsterdam, 2002, 71-305.doi: 10.1016/S1874-5792(02)80004-0.

    [44]

    C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.doi: 10.1007/s00220-002-0777-1.

    [45]

    P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-553.

    [46]

    J. Wei and X. Zhang, The Cauchy problem for the BGK equation with an external force, J. Math. Anal. Appl., 391 (2012), 10-25.doi: 10.1016/j.jmaa.2012.02.039.

    [47]

    B. Wennberg, Entropy dissipation and moment production for the Boltzmann equation, J. Statist. Phys., 86 (1997), 1053-1066.doi: 10.1007/BF02183613.

    [48]

    S.-B. Yun, Cauchy problem for the Boltzmann-BGK model near a global Maxwellian, J. Math. Phy., 51 (2010), 123514, 24pp.doi: 10.1063/1.3516479.

    [49]

    S.-B. Yun, Classical solutions for the ellipsoidal BGK model with fixed collision frequency, J. Differential Equations, 259 (2015), 6009-6037.doi: 10.1016/j.jde.2015.07.016.

    [50]

    S.-B. Yun, Ellipsoidal BGK model near a global Maxwellian, SIAM J. Math. Anal., 47 (2015), 2324-2354.doi: 10.1137/130932399.

    [51]

    X. Zhang, On the Cauchy problem of the Vlasov-Poisson-BGK system: global existence of weak solutions. J. Stat. Phys., 141 (2010), 566-588.doi: 10.1007/s10955-010-0064-z.

    [52]

    X. Zhang and S, Hu, $L^p$ solutions to the Cauchy problem of the BGK equation, J. Math. Phys., 48 (2007), 113304, 17pp.doi: 10.1063/1.2816261.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(228) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return