\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror

Abstract Related Papers Cited by
  • We study the time evolution of a single species positive plasma, confined in a cylinder and having infinite charge. We extend the result of a previous work by the same authors, for a plasma density having compact support in the velocities, to the case of a density having unbounded support and gaussian decay in the velocities.
    Mathematics Subject Classification: Primary: 82D10, 35Q99, 76X05; Secondary: 35L60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Caglioti, S. Caprino, C. Marchioro and M. Pulvirenti, The Vlasov equation with infinite mass, Arch. Rat. Mech. Anal., 159 (2001), 85-108.doi: 10.1007/s002050100150.

    [2]

    S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass, Comm. Part. Diff. Eq., 27 (2002), 791-808.doi: 10.1081/PDE-120002874.

    [3]

    S. Caprino, G. Cavallaro and C. Marchioro, Time evolution of a Vlasov-Poisson plasma with magnetic confinement, Kinetic and Related Models, 5 (2012), 729-742.doi: 10.3934/krm.2012.5.729.

    [4]

    S. Caprino, G. Cavallaro and C. Marchioro, On a magnetically confined plasma with infinite charge, SIAM J. Math. Anal., 46 (2014), 133-164.doi: 10.1137/130916527.

    [5]

    S. Caprino, G. Cavallaro and C. Marchioro, Remark on a magnetically confined plasma with infinite charge, Rend. Mat. Appl., 35 (2014), 69-98.

    [6]

    S. Caprino, G. Cavallaro and C. Marchioro, On a Vlasov-Poisson plasma confined in a torus by a magnetic mirror, J. Math. Anal. Appl., 427 (2015), 31-46.doi: 10.1016/j.jmaa.2015.02.012.

    [7]

    R. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, PA, 1996.doi: 10.1137/1.9781611971477.

    [8]

    P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.doi: 10.1007/BF01232273.

    [9]

    T. Nguyen, V. Nguyen and W. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system, Kinetic and Related Models, 8 (2015), 153-168.doi: 10.3934/krm.2015.8.153.

    [10]

    S. Pankavich, Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics, Comm. Part. Diff. Eq., 31 (2006), 349-370.doi: 10.1080/03605300500358004.

    [11]

    K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, Jour. Diff. Eq., 95 (1992), 281-303.doi: 10.1016/0022-0396(92)90033-J.

    [12]

    J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Part. Diff. Eq., 16 (1991), 1313-1335.doi: 10.1080/03605309108820801.

    [13]

    J. Schaeffer, The Vlasov-Poisson system with steady spatial asymptotics, Comm. Part. Diff. Eq., 28 (2003), 1057-1084.doi: 10.1081/PDE-120021186.

    [14]

    J. Schaeffer, Steady spatial asymptotics for the Vlasov-Poisson system, Math. Meth. Appl. Sci., 26 (2003), 273-296.doi: 10.1002/mma.354.

    [15]

    J. Schaeffer, Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior, Kinetic and Related Models, 5 (2012), 129-153.doi: 10.3934/krm.2012.5.129.

    [16]

    S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system, J. Math. Anal. Appl., 176 (1993), 76-91.doi: 10.1006/jmaa.1993.1200.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(180) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return