December  2016, 9(4): 777-796. doi: 10.3934/krm.2016016

A blowup criterion for the 2D $k$-$\varepsilon$ model equations for turbulent flows

1. 

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan

2. 

School of Mathematics and Information Science, Henan Polytechnic University, Henan 454000, China

Received  September 2015 Revised  May 2016 Published  September 2016

We establish a blow up criterion for the two-dimensional $k$-$\varepsilon$ model equations for turbulent flows in a bounded smooth domain $\Omega$. It is shown that for the initial-boundary value problem of the 2D $k$-$\varepsilon$ model equations in a bounded smooth domain, if $\|\nabla u\|_{L^{1}(0, T; L^{\infty})}+\|\nabla\rho\|_{L^{2}(0, T; L^{\infty})} +\|\varepsilon\|_{L^{2}(0, T; L^{\infty})}$ $<\infty$, then the strong solution $(\rho, u, h,k, \varepsilon)$ can be extended beyond $T$.
Citation: Baoquan Yuan, Guoquan Qin. A blowup criterion for the 2D $k$-$\varepsilon$ model equations for turbulent flows. Kinetic and Related Models, 2016, 9 (4) : 777-796. doi: 10.3934/krm.2016016
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405.

[2]

D. F. Bian and B. L. Guo, Global existence of smooth solutions to the $k$-$\varepsilon$ model equations for turbulent flows, Comm. Math. Sci., 12 (2014), 707-721. doi: 10.4310/CMS.2014.v12.n4.a6.

[3]

T. Cazenave, An introduction to Nonlinear Schrödinger Equations, UFRJ, Rio de Janeiro: RJ:Instituto de Matemática, 1996.

[4]

J. S. Fan, S. Jiang and Y. B. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Ann. I. H. Poincaré-AN, 27 (2010), 337-350. doi: 10.1016/j.anihpc.2009.09.012.

[5]

D. Y. Fang, R. Z. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows, Nonlinear Anal., 75 (2012), 3130-3141. doi: 10.1016/j.na.2011.12.011.

[6]

X. D. Huang, J. Li and Y. Wang, Serrin-type blowup criterion for the full compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 207 (2013), 303-316. doi: 10.1007/s00205-012-0577-5.

[7]

X. D. Huang, J. Li and Z. P. Xin, Blowup criterion for viscous baratropic flows with vacuum states, Comm. Math. Phys., 301 (2011), 23-35. doi: 10.1007/s00220-010-1148-y.

[8]

X. D. Huang and Z. P. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations, Sci. China Math., 53 (2010), 671-686. doi: 10.1007/s11425-010-0042-6.

[9]

X. D. Huang, J. Li and Z. P. Xin, Serrin type criterion for the three-dimensional viscous compressible flows, SIAM J. Math. Anal., 43 (2011), 1872-1886. doi: 10.1137/100814639.

[10]

X. D. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527. doi: 10.1016/j.jde.2012.08.029.

[11]

S. Jiang and Y. B. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1851-1864. doi: 10.1016/S0252-9602(10)60178-6.

[12]

B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence, Academic Press, London and New York, 1972. doi: 10.1002/zamm.19730530619.

[13]

O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations, J. Differential Equations, 245 (2008), 1762-1774. doi: 10.1016/j.jde.2008.07.007.

[14]

Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47. doi: 10.1016/j.matpur.2010.08.001.

[15]

Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Ration. Mech. Anal., 201 (2011), 727-742. doi: 10.1007/s00205-011-0407-1.

[16]

Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214-226. doi: 10.1016/j.nonrwa.2013.09.020.

[17]

T. Wang, A regularity criterion of strong solutions to the 2D compressible magnetohydrodynamic equations, Nonlinear Anal. Real World Appl., 31 (2016), 100-118. doi: 10.1016/j.nonrwa.2016.01.011.

[18]

H. Y. Wen and C. J. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534-572. doi: 10.1016/j.aim.2013.07.018.

[19]

Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equations with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

[20]

B. Q. Yuan and G. Q. Qin, Local existence of strong solutions to the $k$-$\varepsilon$ model equations for turbulent flows, Bound. Value Probl., 27 (2016), 1-26. doi: 10.1186/s13661-016-0532-8.

[21]

B. Q. Yuan and X. K. Zhao, Blow-up criteria for the 2D full compressible MHD system, Appl. Anal.: An International Journal, 93 (2014), 1339-1357. doi: 10.1080/00036811.2013.831076.

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405.

[2]

D. F. Bian and B. L. Guo, Global existence of smooth solutions to the $k$-$\varepsilon$ model equations for turbulent flows, Comm. Math. Sci., 12 (2014), 707-721. doi: 10.4310/CMS.2014.v12.n4.a6.

[3]

T. Cazenave, An introduction to Nonlinear Schrödinger Equations, UFRJ, Rio de Janeiro: RJ:Instituto de Matemática, 1996.

[4]

J. S. Fan, S. Jiang and Y. B. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Ann. I. H. Poincaré-AN, 27 (2010), 337-350. doi: 10.1016/j.anihpc.2009.09.012.

[5]

D. Y. Fang, R. Z. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows, Nonlinear Anal., 75 (2012), 3130-3141. doi: 10.1016/j.na.2011.12.011.

[6]

X. D. Huang, J. Li and Y. Wang, Serrin-type blowup criterion for the full compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 207 (2013), 303-316. doi: 10.1007/s00205-012-0577-5.

[7]

X. D. Huang, J. Li and Z. P. Xin, Blowup criterion for viscous baratropic flows with vacuum states, Comm. Math. Phys., 301 (2011), 23-35. doi: 10.1007/s00220-010-1148-y.

[8]

X. D. Huang and Z. P. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations, Sci. China Math., 53 (2010), 671-686. doi: 10.1007/s11425-010-0042-6.

[9]

X. D. Huang, J. Li and Z. P. Xin, Serrin type criterion for the three-dimensional viscous compressible flows, SIAM J. Math. Anal., 43 (2011), 1872-1886. doi: 10.1137/100814639.

[10]

X. D. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527. doi: 10.1016/j.jde.2012.08.029.

[11]

S. Jiang and Y. B. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1851-1864. doi: 10.1016/S0252-9602(10)60178-6.

[12]

B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence, Academic Press, London and New York, 1972. doi: 10.1002/zamm.19730530619.

[13]

O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations, J. Differential Equations, 245 (2008), 1762-1774. doi: 10.1016/j.jde.2008.07.007.

[14]

Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47. doi: 10.1016/j.matpur.2010.08.001.

[15]

Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Ration. Mech. Anal., 201 (2011), 727-742. doi: 10.1007/s00205-011-0407-1.

[16]

Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214-226. doi: 10.1016/j.nonrwa.2013.09.020.

[17]

T. Wang, A regularity criterion of strong solutions to the 2D compressible magnetohydrodynamic equations, Nonlinear Anal. Real World Appl., 31 (2016), 100-118. doi: 10.1016/j.nonrwa.2016.01.011.

[18]

H. Y. Wen and C. J. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534-572. doi: 10.1016/j.aim.2013.07.018.

[19]

Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equations with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

[20]

B. Q. Yuan and G. Q. Qin, Local existence of strong solutions to the $k$-$\varepsilon$ model equations for turbulent flows, Bound. Value Probl., 27 (2016), 1-26. doi: 10.1186/s13661-016-0532-8.

[21]

B. Q. Yuan and X. K. Zhao, Blow-up criteria for the 2D full compressible MHD system, Appl. Anal.: An International Journal, 93 (2014), 1339-1357. doi: 10.1080/00036811.2013.831076.

[1]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[2]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[3]

Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115

[4]

Xin Zhong. A blow-up criterion for three-dimensional compressible magnetohydrodynamic equations with variable viscosity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3249-3264. doi: 10.3934/dcdsb.2018318

[5]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[6]

Anthony Suen. Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1387-1390. doi: 10.3934/dcds.2015.35.1387

[7]

Anthony Suen. A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3791-3805. doi: 10.3934/dcds.2013.33.3791

[8]

Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations and Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007

[9]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

[10]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[11]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure and Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[12]

Jeongho Kim, Weiyuan Zou. Solvability and blow-up criterion of the thermomechanical Cucker-Smale-Navier-Stokes equations in the whole domain. Kinetic and Related Models, 2020, 13 (3) : 623-651. doi: 10.3934/krm.2020021

[13]

Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110

[14]

Hayato Miyazaki. Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2411-2445. doi: 10.3934/dcds.2020370

[15]

Ahmad Z. Fino, Mohamed Ali Hamza. Blow-up of solutions to semilinear wave equations with a time-dependent strong damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022006

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5383-5405. doi: 10.3934/dcdsb.2020348

[17]

Bin Han, Na Zhao. Improved blow up criterion for the three dimensional incompressible magnetohydrodynamics system. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4455-4478. doi: 10.3934/cpaa.2020203

[18]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[19]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[20]

Dehua Wang. Global solution for the mixture of real compressible reacting flows in combustion. Communications on Pure and Applied Analysis, 2004, 3 (4) : 775-790. doi: 10.3934/cpaa.2004.3.775

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]