# American Institute of Mathematical Sciences

March  2017, 10(1): 215-237. doi: 10.3934/krm.2017009

## Deterministic particle approximation of the Hughes model in one space dimension

 1 DISIM, Università degli Studi dell'Aquila, via Vetoio 1 (Coppito), 67100 L'Aquila (AQ), Italy 2 Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, plac Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland 3 Dipartimento di Matematica ed Informatica, Università di Catania, Viale Andrea Doria 6,95125 Catania, Italy

* Corresponding author: Marco Di Francesco

Received  March 2016 Revised  July 2016 Published  November 2016

In this paper we present a new approach to the solution to a generalized version of Hughes' models for pedestrian movements based on a follow-the-leader many particle approximation. In particular, we provide a rigorous global existence result under a smallness assumption on the initial data ensuring that the trace of the solution along the turning curve is zero for all positive times. We also focus briefly on the approximation procedure for symmetric data and Riemann type data. Two different numerical approaches are adopted for the simulation of the model, namely the proposed particle method and a Godunov type scheme. Several numerical tests are presented, which are in agreement with the theoretical prediction.

Citation: Marco Di Francesco, Simone Fagioli, Massimiliano Daniele Rosini, Giovanni Russo. Deterministic particle approximation of the Hughes model in one space dimension. Kinetic and Related Models, 2017, 10 (1) : 215-237. doi: 10.3934/krm.2017009
##### References:

show all references

##### References:
Evolution of $R(t,x)$ with initial data $\bar{\rho}(x)=0.25$ at times $t=0$, $t=0.5$ and $t=1$. In the particle simulations the blu dots represent particles positions, whereas the red line is the discretized density. The magenta vertical line describes the turning point evolution
Evolution of $R(t,x)$ with initial data $\bar{\rho}(x)=0.6$ at times $t=0$, $t=0.5$ and $t=1$
Evolution of $R(t,x)$ with initial data $\bar{\rho}(x)$ given in (24)
Evolution of $R(t,x)$ with initial data $\bar{\rho}(x)$ given in (25)
Evolution of $R(t,x)$ with initial data $\bar{\rho}(x)$ given in (26)
Mass transfer across the turning point and non-classical shock with initial data $\bar{\rho}$ given in (26)
Comparison between the Follow-the-Leader scheme (in red) and the Godunov scheme (in blu)
Increasing the number of particles, and then the cells integration for the Godunov method, the agreement between the two methods greatly improves. Here we consider the initial datum $\bar{\rho}=0.3\times\,\mathbf{1}_{[-1,0]}+0.7\times \,\mathbf{1}_{(0,1]}$ and we set $N=1000$ with $1500$ time iterations
 [1] Fabio Camilli, Adriano Festa, Silvia Tozza. A discrete Hughes model for pedestrian flow on graphs. Networks and Heterogeneous Media, 2017, 12 (1) : 93-112. doi: 10.3934/nhm.2017004 [2] Dirk Hartmann, Isabella von Sivers. Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media, 2013, 8 (4) : 985-1007. doi: 10.3934/nhm.2013.8.985 [3] Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433 [4] Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617 [5] Abdul M. Kamareddine, Roger L. Hughes. Towards a mathematical model for stability in pedestrian flows. Networks and Heterogeneous Media, 2011, 6 (3) : 465-483. doi: 10.3934/nhm.2011.6.465 [6] Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 [7] Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic and Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35 [8] María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038 [9] Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393 [10] Mark A. Peletier, Marco Veneroni. Stripe patterns and the Eikonal equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 183-189. doi: 10.3934/dcdss.2012.5.183 [11] Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic and Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049 [12] María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331 [13] Gianluca Crippa, Laura V. Spinolo. An overview on some results concerning the transport equation and its applications to conservation laws. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1283-1293. doi: 10.3934/cpaa.2010.9.1283 [14] Yuri B. Gaididei, Christian Marschler, Mads Peter Sørensen, Peter L. Christiansen, Jens Juul Rasmussen. Pattern formation in flows of asymmetrically interacting particles: Peristaltic pedestrian dynamics as a case study. Evolution Equations and Control Theory, 2019, 8 (1) : 73-100. doi: 10.3934/eect.2019005 [15] Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045 [16] Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 [17] Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565 [18] Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 [19] Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159 [20] Chadi Nour. Construction of solutions to a global Eikonal equation. Conference Publications, 2007, 2007 (Special) : 779-783. doi: 10.3934/proc.2007.2007.779

2021 Impact Factor: 1.398