In this paper we consider a Vlasov or collisionless Boltzmann equation describing the dynamics of planetary rings. We propose a simple physical model, where the particles of the rings move under the gravitational Newtonian potential of two primary bodies. We neglect the gravitational forces between the particles. We use a perturbative technique, which allows to find explicit solutions at the first order and approximate solutions at the second order, by solving a set of two linear ordinary differential equations.
Citation: |
S. J. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511535246.![]() ![]() ![]() |
|
J. Batt
, W. Faltenbacher
and E. Horst
, Stationary spherically symmetric models in stellar dynamics, Ration. Mech. Anal., 93 (1986)
, 159-183.
doi: 10.1007/BF00279958.![]() ![]() ![]() |
|
J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, New York, 1988.
doi: 10.1063/1.2811635.![]() ![]() |
|
A. Bose
and M. S. Janaki
, Density distribution for an inhomogeneous finite gravitational system, Eur. Phys. J. B, 85 (2012)
, p360.
doi: 10.1140/epjb/e2012-30357-x.![]() ![]() |
|
C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1039-9.![]() ![]() ![]() |
|
P.-H. Chavanis
, Hamiltonian and Brownian systems with long-range interactions: Ⅰ Statistical equilibrium states and correlation functions, Physica A, 361 (2006)
, 55-80.
doi: 10.1016/j.physa.2005.06.087.![]() ![]() ![]() |
|
Y. Cheng
and I. M. Gamba
, Numerical study of one-dimensional Vlasov-Poisson equations for infinite homogeneous stellar systems, Nonlinear Sci. Numer. Simul., 17 (2012)
, 2052-2061.
doi: 10.1016/j.cnsns.2011.10.004.![]() ![]() ![]() |
|
P. Goldreich
and S. Tremaine
, The formation of the Cassini division in Saturn's rings, Icarus, 34 (1978)
, 240-253.
doi: 10.1016/0019-1035(78)90165-3.![]() ![]() |
|
E. Griv
, M. Gedalin
, D. Eichler
and C. Yuan
, A gas-kinetic stability analysis of self-gravitating and collisional particulate disks with application to Saturn's rings, Planet. Space Sci., 48 (2000)
, 679-698.
doi: 10.1016/S0032-0633(00)00037-4.![]() ![]() |
|
E. Griv
, M. Gedalin
and C. Yuan
, On the stability of Saturn's rings: A quasi-linear kinetic theory, Mon. Not. R. Astron. Soc., 342 (2003)
, 1102-1116.
doi: 10.1046/j.1365-8711.2003.06608.x.![]() ![]() |
|
E. Griv
and M. Gedalin
, The fine-scale spiral structure of low and moderately high optical depth regions of Saturn's main rings: A review, Planet. Space Sci., 51 (2003)
, 899-927.
doi: 10.1016/j.pss.2003.05.003.![]() ![]() |
|
J. J. Lissauer
and J. N. Cuzzi
, Resonances in Saturn's rings, Astrophys. J., 87 (1982)
, 1051-1058.
doi: 10.1086/113189.![]() ![]() |
|
C. Mouhot
, Stabilité orbitale pour le systéme de Vlasov-Poisson gravitationnel: (D'aprés Lemou-Méhats-Raphaël, Guo, Lin, Rein et al.), Asterisque, 352 (2013)
, 35-82.
![]() ![]() |
|
A. Ramírez-Hernández
, H. Larralde
and F. Leyvraz
, Violation of the zeroth law of thermodynamics in systems with negative specific heat, Phys. Rev. Lett., 100 (2008)
, 120601.
![]() |
|
G. Rein
, Collisionless kinetic equations from astrophysics -the Vlasov-Poisson system, Handbook of differential equations: evolutionary equations, Elsevier/North-Holland, Amsterdam, 3 (2007)
, 383-476.
doi: 10.1016/S1874-5717(07)80008-9.![]() ![]() ![]() |
|
G. Severne
and M. J. Haggerty
, Kinetic theory for finite inhomogeneous gravitational systems, Astrophys. Space Sci., 45 (1976)
, 287-302.
doi: 10.1007/BF00642666.![]() ![]() ![]() |
|
V. Szebehely, Theory of Orbit: The Restricted Problem of Three Bodies, Academic Press, New York and London, 1967.
![]() |
|
T. N. Teles
, Y. Levin
, R. Pakter
and F. B. Rizzato
, Statistical mechanics of unbound two-dimensional self-gravitating systems, J. Stat. Mech., 2010 (2010)
, P05007.
doi: 10.1088/1742-5468/2010/05/P05007.![]() ![]() |
|
J. Touma and S. Tremaine, The statistical mechanics of self-gravitating Keplerian discs J. Phys. A: Math. Theor. 47 (2014), 292001, 25pp.
doi: 10.1088/1751-8113/47/29/292001.![]() ![]() ![]() |
|
K. Yoshikawa, N. Yoshida and M. Umemura, Direct integration of the collisionless Boltzmann equation in six-dimensional phase space: Self-gravitating systems Astrophys. J. 762 (2013), art. no. 116.
doi: 10.1088/0004-637X/762/2/116.![]() ![]() |
The density of mass of
The density of mass of