We study the numerical behaviour of a particle method for gradient flows involving linear and nonlinear diffusion. This method relies on the discretisation of the energy via non-overlapping balls centred at the particles. The resulting scheme preserves the gradient flow structure at the particle level and enables us to obtain a gradient descent formulation after time discretisation. We give several simulations to illustrate the validity of this method, as well as a detailed study of one-dimensional aggregation-diffusion equations.
Citation: |
L. Ambrosio, N. Gigli and G. Savaré,
Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser Basel, 2005.
doi: 10.1007/978-3-7643-8722-8.![]() ![]() ![]() |
|
L. Ambrosio and G. Savaré,
Gradient flows of probability measures, In Handbook of Differential Equations: Evolutionary Equations. North-Holland, 3 (2007), 1-136.
doi: 10.1016/S1874-5717(07)80004-1.![]() ![]() ![]() |
|
H. Attouch,
Variational Convergence for Functions and Operators, Applicable Mathematics. Pitman Advanced Publishing Program, 1984.
![]() ![]() |
|
J. -P. Aubin and A. Cellina,
Differential Inclusions, Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 1984.
doi: 10.1007/978-3-642-69512-4.![]() ![]() ![]() |
|
J.-D. Benamou
, G. Carlier
, Q. Mérigot
and E. Oudet
, Discretization of functionals involving the Monge-Ampère operator, Numer. Math., 134 (2016)
, 611-636.
doi: 10.1007/s00211-015-0781-y.![]() ![]() ![]() |
|
D. Benedetto
, E. Caglioti
, J. A. Carrillo
and M. Pulvirenti
, A non-Maxwellian steady distribution for one-dimensional granular media, J. Statist. Phys., 91 (1998)
, 979-990.
doi: 10.1023/A:1023032000560.![]() ![]() ![]() |
|
M. Bessemoulin-Chatard
and F. Filbet
, A finite volume scheme for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 34 (2012)
, B559-B583.
doi: 10.1137/110853807.![]() ![]() ![]() |
|
A. Blanchet
, V. Calvez
and J. A. Carrillo
, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., 46 (2008)
, 691-721.
doi: 10.1137/070683337.![]() ![]() ![]() |
|
H. Brézis,
Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Mathematics Studies. Elsevier Science, 1973.
![]() ![]() |
|
V. Calvez
and T. Gallouët
, Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up, Discrete Contin. Dyn. Syst., 36 (2016)
, 1175-1208.
doi: 10.3934/dcds.2016.36.1175.![]() ![]() ![]() |
|
V. Calvez
, B. Perthame
and M. Sharifi-tabar
, Modified Keller-Segel system and critical mass for the log interaction kernel, Contemp. Math., 429 (2007)
, 45-62.
doi: 10.1090/conm/429/08229.![]() ![]() ![]() |
|
J. A. Carrillo
, A. Chertock
and Y. Huang
, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17 (2015)
, 233-258.
doi: 10.4208/cicp.160214.010814a.![]() ![]() ![]() |
|
J. A. Carrillo, Y. -P. Choi and M. Hauray,
The derivation of swarming models: Mean-field limit and Wasserstein distances, In Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation. Springer Vienna, 553 (2014), 1-46.
doi: 10.1007/978-3-7091-1785-9_1.![]() ![]() ![]() |
|
J. A. Carrillo
, M. Di Francesco
and G. Toscani
, Strict contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering, Proc. Amer. Math. Soc., 135 (2007)
, 353-363.
doi: 10.1090/S0002-9939-06-08594-7.![]() ![]() ![]() |
|
J. A. Carrillo
, R. J. McCann
and C. Villani
, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam., 19 (2003)
, 971-1018.
doi: 10.4171/RMI/376.![]() ![]() ![]() |
|
J. A. Carrillo
and J. S. Moll
, Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms, SIAM J. Sci. Comput., 31 (2009)
, 4305-4329.
doi: 10.1137/080739574.![]() ![]() ![]() |
|
J. A. Carrillo
, F. S. Patacchini
, P. Sternberg
and G. Wolansky
, Convergence of a particle method for diffusive gradient flows in one dimension, SIAM J. Math. Anal., 48 (2016)
, 3708-3741.
doi: 10.1137/16M1077210.![]() ![]() ![]() |
|
P. Degond
and F. J. Mustieles
, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Statist. Comput., 11 (1990)
, 293-310.
doi: 10.1137/0911018.![]() ![]() ![]() |
|
L. Gosse
and G. Toscani
, Lagrangian numerical approximations to one-dimensional convolution-diffusion equations, SIAM J. Sci. Comput., 28 (2006)
, 1203-1227.
doi: 10.1137/050628015.![]() ![]() ![]() |
|
S. Graf and H. Luschgy,
Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2000.
doi: 10.1007/BFb0103945.![]() ![]() ![]() |
|
R. Jordan
, D. Kinderlehrer
and F. Otto
, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998)
, 1-17.
doi: 10.1137/S0036141096303359.![]() ![]() ![]() |
|
O. Junge, H. Osberger and D. Matthes,
A fully discrete variational scheme for solving nonlinear Fokker-Planck equations in higher space dimensions,
Preprint, arXiv: 1509.07721.
![]() |
|
P.-L. Lions
and S. Mas-Gallic
, Une méthode particulaire déterministe pour des équations diffusives non linéaires, C. R. Acad. Sci. Paris Sér. Ⅰ Math., 332 (2001)
, 369-376.
doi: 10.1016/S0764-4442(00)01795-X.![]() ![]() ![]() |
|
S. Mas-Gallic
, The diffusion velocity method: A deterministic way of moving the nodes for solving diffusion equations, Transp. Theory Stat. Phys., 31 (2002)
, 595-605.
doi: 10.1081/TT-120015516.![]() ![]() ![]() |
|
R. J. McCann
, A convexity principle for interacting gases, Adv. Math., 128 (1997)
, 153-179.
doi: 10.1006/aima.1997.1634.![]() ![]() ![]() |
|
R. J. McCann,
A Convexity Theory for Interacting Gases and Equilibrium Crystals, PhD thesis, Princeton University, 1994.
![]() ![]() |
|
A. Mielke,
On evolutionary Gamma-convergence for gradient systems, In Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Springer, 3 (2016), 187-249.
doi: 10.1007/978-3-319-26883-5_3.![]() ![]() ![]() |
|
H. Osberger
and D. Matthes
, A convergent Lagrangian discretization for a nonlinear fourth order equation, Found. Comput. Math., (2015)
, 1-54.
doi: 10.1007/s10208-015-9284-6.![]() ![]() |
|
H. Osbergers
and D. Matthes
, Convergence of a fully discrete variational scheme for a thin-film equation, Accepted in Radon Ser. Comput. Appl. Math., (2015)
.
![]() |
|
H. Osberger
and D. Matthes
, Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM Math. Model. Numer. Anal., 48 (2014)
, 697-726.
doi: 10.1051/m2an/2013126.![]() ![]() ![]() |
|
F. Otto
, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001)
, 101-174.
doi: 10.1081/PDE-100002243.![]() ![]() ![]() |
|
G. Russo
, A particle method for collisional kinetic equations. Ⅰ. Basic theory and one-dimensional results, J. Comput. Phys., 87 (1990)
, 270-300.
doi: 10.1016/0021-9991(90)90254-X.![]() ![]() ![]() |
|
G. Russo
, Deterministic diffusion of particles, Comm. Pure Appl. Math., 43 (1990)
, 697-733.
doi: 10.1002/cpa.3160430602.![]() ![]() ![]() |
|
E. Sandier
and S. Serfaty
, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004)
, 1627-1672.
doi: 10.1002/cpa.20046.![]() ![]() ![]() |
|
S. Serfaty
, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst, 31 (2011)
, 1427-1451.
doi: 10.3934/dcds.2011.31.1427.![]() ![]() ![]() |
|
C. M. Topaz
, A. L. Bertozzi
and M. A. Lewis
, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006)
, 1601-1623.
doi: 10.1007/s11538-006-9088-6.![]() ![]() ![]() |
|
J. L. Vázquez,
The Porous Medium Equation, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.
![]() ![]() |
|
C. Villani,
Topics in Optimal Transportation, Graduate studies in mathematics. American Mathematical Society, Providence (R. I. ), 2003.
doi: 10.1090/gsm/058.![]() ![]() ![]() |
The heat equation
The porous medium equation with
The linear Fokker-Planck equation with
The nonlinear Fokker-Planck equation with
The particles' positions for the two-dimensional heat equation for
Accuracy for the two-dimensional heat equation with
The modified Keller-Segel equation with
The blow-up of the modified Keller-Segel equation with
Blow-up formation for the modified Keller-Segel equation with two initial Gaussian bumps
The modified nonlinear Keller-Segel equation with
Compactly supported potential