|
L. M. Abia
, O. Angulo
and J. C. Lopez-Marcos
, Numerical schemes for a size-structured cell population model with equal fission, Mathematical and Computer Modelling, 50 (2009)
, 653-664.
doi: 10.1016/j.mcm.2009.05.023.
|
|
A. S. Ackleh
and K. Ito
, Measure-valued solutions for a hierarchically size-structured population, Journal of Differential Equations, 217 (2005)
, 431-455.
doi: 10.1016/j.jde.2004.12.013.
|
|
A. S. Ackleh
, B. G. Fitzpatrick
and H. R. Thieme
, Rate distributions and survival of the fittest: A formulation on the space of measures, Discrete and Continuous Dynamical Systems Series B, 5 (2005)
, 917-928.
doi: 10.3934/dcdsb.2005.5.917.
|
|
A. L. Bertozzi
, T. Kolokonikov
, H. Sun
and D. Uminsky
, Stability of ring patterns arising from 2d particle interactions, Physical Review E, 84 (2011)
.
|
|
C. K. Birdsal and A. B. Langdon, Plasma Physics Via Computer Simulation, McGraw-Hill, New York, 1985.
|
|
A. Brannstrom
, L. Carlsson
and D. Simpson
, On the convergence of the escalator boxcar train, SIAM J. Numer. Anal., 51 (2013)
, 3213-3231.
doi: 10.1137/120893215.
|
|
A. Bressan, Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem, Oxford Leture Series in Mathematics and its Applications vol. 20, Oxford University Press, 2000.
|
|
J. A. Cañizo
, J. A. Carrillo
and J. Rosado
, A well-posedness theory in measures for some kinetic models of collective motion, Mathematical Models and Methods in Applied Sciences, 21 (2011)
, 515-539.
doi: 10.1142/S0218202511005131.
|
|
J. A. Carrillo
, R. Colombo
, P. Gwiazda
and A. Ulikowska
, Structured populations, cell growth and measure valued balance laws, Journal of Differential Equations, 252 (2012)
, 3245-3277.
doi: 10.1016/j.jde.2011.11.003.
|
|
J.A. Carrillo
, P. Gwiazda
and A. Ulikowska
, Splitting particle methods for structured population models: Convergence and applications, Math. Models Methods Appl. Sci., 24 (2014)
, 2171-2197.
doi: 10.1142/S0218202514500183.
|
|
R. M. Colombo
and G. Guerra
, Differential equations in metric spaces with applications, Discrete Contin. Dyn. Syst., 23 (2009)
, 733-753.
doi: 10.3934/dcds.2009.23.733.
|
|
G. H. Cottet
and P. A. Raviart
, Particle methods for the one-dimensional Vlasov-Poisson equations, SIAM J. Numer. Anal., 21 (1984)
, 52-76.
doi: 10.1137/0721003.
|
|
A. M. de Roos
, Numerical methods for structured population models: The escalator boxcar train, Numerical Methods for Partial Differential Equations, 4 (1988)
, 173-195.
doi: 10.1002/num.1690040303.
|
|
A. M. de Roos and L. Persson, Population and Community Ecology of Ontogenetic Development, Monographs in Population Biology 51, Princeton University Press, Princeton, 2013.
|
|
O. Diekmann
and Ph. Getto
, Boundedness, global existence and continuous dependence for nonlinear dynamical systems describing physiologically structured populations, J. Differential Equations, 215 (2005)
, 268-319.
doi: 10.1016/j.jde.2004.10.025.
|
|
M. R. D'Orsogna, Y. Chuang, A. L. Bertozzi and L. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability and collapse, Phys. Rev. Lett., 96 (2006).
|
|
J. Evers
, S. Hille
and A. Muntean
, Mild solutions to a measure-valued mass evolution problem with flux boundary conditions, Journal of Differential Equations, 259 (2015)
, 1068-1097.
doi: 10.1016/j.jde.2015.02.037.
|
|
K. Ganguly
and H. D. Victory Jr
, On the convergence of particle methods for multidimensional Vlasov-Poisson systems, SIAM J. Numer. Anal., 26 (1989)
, 249-288.
doi: 10.1137/0726015.
|
|
J. Goodman
, T. Y. Hou
and J. Lowengrub
, Convergence of the point vortex method for the 2-D Euler equations, Comm. Pure Appl. Math., 43 (1990)
, 415-430.
doi: 10.1002/cpa.3160430305.
|
|
P. Gwiazda
, J. Jabƚoński
, A. Marciniak-Czochra
and A. Ulikowska
, Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded Lipschitz distance, Numerical Methods for Partial Differential Equations, 30 (2014)
, 1797-1820.
doi: 10.1002/num.21879.
|
|
P. Gwiazda
, G. Jamróz
and A. Marciniak-Czochra
, Models of discrete and continuous cell differentiation in the framework of transport equation, SIAM Journal on Mathematical Analysis, 44 (2012)
, 1103-1133.
doi: 10.1137/11083294X.
|
|
P. Gwiazda
, T. Lorenz
and A. Marciniak-Czochra
, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients, Journal of Differential Equations, 248 (2010)
, 2703-2735.
doi: 10.1016/j.jde.2010.02.010.
|
|
P. Gwiazda
and A. Marciniak-Czochra
, Structured population equations in metric spaces, Journal of Hyperbolic Differential Equations, 7 (2010)
, 733-773.
doi: 10.1142/S021989161000227X.
|
|
F. H. Harlow
, The particle-in-cell computing method for fluid dynamics, Methods in computational physics, 3 (1964)
, 319-343.
|
|
D. Issautier
, Convergence of a weighted particle method for solving the Boltzmann (BGK) equation, SIAM J. Numer. Anal., 33 (1996)
, 2099-2119.
doi: 10.1137/S0036142994266856.
|
|
B. Piccoli
and F. Rossi
, Generalized Wasserstein distance and its application to transport equations with source, Arch. Ration. Mech. Anal., 211 (2014)
, 335-358.
doi: 10.1007/s00205-013-0669-x.
|
|
B. Piccoli
and A. Tosin
, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011)
, 707-738.
doi: 10.1007/s00205-010-0366-y.
|
|
P. A. Raviart, An analysis of particle methods, Numerical Methods in Fluid Dynamics, Lecture Notes in Math. , Springer, Berlin, 1127 (1985), 243-324.
doi: 10.1007/BFb0074532.
|
|
E. Tadmor
, A review of numerical methods for nonlinear partial differential equations, Bulletin of the American Mathematical Society, 49 (2012)
, 507-554.
doi: 10.1090/S0273-0979-2012-01379-4.
|
|
C. Villani, Topics in Optimal Transportation, volume 58 of Graduate studies in mathematics, American Mathematical Society, 2003.
doi: 10.1007/b12016.
|
|
G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, 89. Marcel Dekker, Inc., New York, 1985.
|
|
M. Westdickenberg
and J. Wilkening
, Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations, M2AN Math. Model. Numer. Anal., 44 (2010)
, 133-166.
doi: 10.1051/m2an/2009043.
|