Advanced Search
Article Contents
Article Contents

Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • We consider some extensions of the classical discrete Boltzmann equation to the cases of multicomponent mixtures, polyatomic molecules (with a finite number of different internal energies), and chemical reactions, but also general discrete quantum kinetic Boltzmann-like equations; discrete versions of the Nordheim-Boltzmann (or Uehling-Uhlenbeck) equation for bosons and fermions and a kinetic equation for excitations in a Bose gas interacting with a Bose-Einstein condensate. In each case we have an H-theorem and so for the planar stationary half-space problem, we have convergence to an equilibrium distribution at infinity (or at least a manifold of equilibrium distributions). In particular, we consider the nonlinear half-space problem of condensation and evaporation for these discrete Boltzmann-like equations. We assume that the flow tends to a stationary point at infinity and that the outgoing flow is known at the wall, maybe also partly linearly depending on the incoming flow. We find that the systems we obtain are of similar structures as for the classical discrete Boltzmann equation (for single species), and that previously obtained results for the discrete Boltzmann equation can be applied after being generalized. Then the number of conditions on the assigned data at the wall needed for existence of a unique solution is found. The number of parameters to be specified in the boundary conditions depends on if we have subsonic or supersonic condensation or evaporation. All our results are valid for any finite number of velocities.

    Mathematics Subject Classification: Primary: 82C40; Secondary: 35Q20, 76P05.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  27-velocity model for a mixture of three species with mass ratios 2, 3/2, and 3

    Figure 2.  24-velocity supernormal DVM for internal energies E, 2E, and 3E

  •   L. Arkeryd , On low temperature kinetic theory; spin diffusion, Bose-Einstein condensates, anyons, J. Stat. Phys., 150 (2013) , 1063-1079.  doi: 10.1007/s10955-013-0695-y.
      L. Arkeryd  and  A. Nouri , A Milne problem from a Bose condensate with excitations, Kinet. Relat. Models, 6 (2013) , 671-686.  doi: 10.3934/krm.2013.6.671.
      H. Babovsky , Kinetic boundary layers: On the adequate discretization of the Boltzmann collision operator, J. Comp. Appl. Math., 110 (1999) , 225-239.  doi: 10.1016/S0377-0427(99)00196-X.
      C. Bardos , F. Golse  and  Y. Sone , Half-space problems for the Boltzmann equation: A survey, J. Stat. Phys., 124 (2006) , 275-300.  doi: 10.1007/s10955-006-9077-z.
      C. Bardos  and  X. Yang , The classification of well-posed kinetic boundary layer for hard sphere gas mixtures, Comm. Partial Differ. Equ., 37 (2012) , 1286-1314.  doi: 10.1080/03605302.2011.624149.
      N. Bernhoff , On half-space problems for the linearized discrete Boltzmann equation, Riv. Mat. Univ. Parma, 9 (2008) , 73-124. 
      N. Bernhoff , On half-space problems for the weakly non-linear discrete Boltzmann equation, Kinet. Relat. Models, 3 (2010) , 195-222.  doi: 10.3934/krm.2010.3.195.
      N. Bernhoff , Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures, Kinet. Relat. Models, 5 (2012) , 1-19.  doi: 10.3934/krm.2012.5.1.
      N. Bernhoff , Half-space problem for the discrete Boltzmann equation: Condensing vapor flow in the presence of a non-condensable gas, J. Stat. Phys., 147 (2012) , 1156-1181.  doi: 10.1007/s10955-012-0513-y.
      N. Bernhoff , Half-space problems for a linearized discrete quantum kinetic equation, J. Stat. Phys., 159 (2015) , 358-379.  doi: 10.1007/s10955-015-1190-4.
      N. Bernhoff , Discrete velocity models for multicomponent mixtures and polyatomic molecules without nonphysical collision invariants and shock profiles, AIP Conference Proceedings, 1786 (2016) , 040005.  doi: 10.1063/1.4967543.
      N. Bernhoff, Discrete velocity models for polyatomic molecules without nonphysical collision invariants, Preprint.
      N. Bernhoff  and  A. Bobylev , Weak shock waves for the general discrete velocity model of the Boltzmann equation, Commun. Math. Sci., 5 (2007) , 815-832.  doi: 10.4310/CMS.2007.v5.n4.a4.
      N. Bernhoff  and  M. C. Vinerean , Discrete velocity models for multicomponent mixtures without nonphysical collision invariants, J. Stat. Phys., 165 (2016) , 434-453.  doi: 10.1007/s10955-016-1624-7.
      G. A. Bird, Molecular gas dynamics Clarendon-Press, 1976.
      A. V. Bobylev and N. Bernhoff, Discrete velocity models and dynamical systems, in Lecture Notes on the Discretization of the Boltzmann Equation (eds. N. Bellomo and R. Gatignol), World Scientific, 63 (2003), 203–222. doi: 10.1142/9789812796905_0008.
      A. V. Bobylev  and  C. Cercignani , Discrete velocity models without non-physical invariants, J. Stat. Phys., 97 (1999) , 677-686.  doi: 10.1023/A:1004615309058.
      A. V. Bobylev , A. Palczewski  and  J. Schneider , On approximation of the Boltzmann equation by discrete velocity models, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995) , 639-644. 
      A. V. Bobylev  and  M. C. Vinerean , Construction of discrete kinetic models with given invariants, J. Stat. Phys., 132 (2008) , 153-170.  doi: 10.1007/s10955-008-9536-9.
      C. Buet , Conservative and entropy schemes for Boltzmann collision operator of polyatomic gases, Math. Mod. Meth. Appl. Sci., 7 (1997) , 165-192.  doi: 10.1142/S0218202597000116.
      H. Cabannes, The discrete Boltzmann equation, 1980 (2003), Lecture notes given at the University of California at Berkeley, 1980, revised with R. Gatignol and L-S. Luo, 2003.
      C. Cercignani, The Boltzmann Equation and its Applications Springer-Verlag, 1988. doi: 10.1007/978-1-4612-1039-9.
      C. Cercignani, Rarefied Gas Dynamics Cambridge University Press, 2000.
      C. Cercignani , R. Illner , M. Pulvirenti  and  M. Shinbrot , On nonlinear stationary half-space problems in discrete kinetic theory, J. Stat. Phys., 52 (1988) , 885-896.  doi: 10.1007/BF01019733.
      F. Coron , F. Golse  and  C. Sulem , A classification of well-posed kinetic layer problems, Comm. Pure Appl. Math., 41 (1988) , 409-435.  doi: 10.1002/cpa.3160410403.
      A. Ern and V. Giovangigli, Multicomponent Transport Algorithms Springer-Verlag, 1994.
      L. Fainsilber , P. Kurlberg  and  B. Wennberg , Lattice points on circles and discrete velocity models for the Boltzmann equation, Siam J. Math. Anal., 37 (2006) , 1903-1922.  doi: 10.1137/040618916.
      R. Gatignol, Théorie Cinétique des Gaz á Répartition Discréte de Vitesses Springer-Verlag, 1975.
      F. Golse , Analysis of the boundary layer equation in the kinetic theory of gases, Bull. Inst. Math. Acad. Sin., 3 (2008) , 211-242. 
      M. Groppi  and  G. Spiga , Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (1999) , 197-219. 
      S. Kawashima  and  S. Nishibata , Existence of a stationary wave for the discrete Boltzmann equation in the half space, Comm. Math. Phys., 207 (1999) , 385-409.  doi: 10.1007/s002200050730.
      S. Kawashima  and  S. Nishibata , Stationary waves for the discrete Boltzmann equation in the half space with reflective boundaries, Comm. Math. Phys., 211 (2000) , 183-206.  doi: 10.1007/s002200050808.
      T. R. Kirkpatrick  and  J. R. Dorfman , Transport in a dilute but condensed nonideal Bose gas: Kinetic equations, J. Low Temp. Phys., 58 (1985) , 301-331.  doi: 10.1007/BF00681309.
      C. Mouhot , L. Pareschi  and  T. Rey , Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation, Math. Model. Numer. Anal., 47 (2013) , 1515-1531.  doi: 10.1051/m2an/2013078.
      A. Munafó , J. R. Haack , I. M. Gamba  and  T. E. Magin , A spectral-Lagrangian Boltzmann solver for a multi-energy level gas, J. Comput. Phys., 264 (2014) , 152-176.  doi: 10.1016/j.jcp.2014.01.036.
      L. W. Nordheim , On the kinetic methods in the new statistics and its applications in the electron theory of conductivity, Proc. Roy. Soc. London Ser. A, 119 (1928) , 689-698.  doi: 10.1098/rspa.1928.0126.
      A. Palczewski , J. Schneider  and  A. V. Bobylev , A consistency result for a discrete-velocity model of the Boltzmann equation, SIAM J. Numer. Anal., 34 (1997) , 1865-1883.  doi: 10.1137/S0036142995289007.
      A. Rossani  and  G. Spiga , A note on the kinetic theory of chemically reacting gases, Phys. A, 272 (1999) , 563-573.  doi: 10.1016/S0378-4371(99)00336-2.
      Y. Sone, Kinetic Theory and Fluid Dynamics Birkhauser, 2002. doi: 10.1007/978-1-4612-0061-1.
      Y. Sone, Molecular Gas Dynamics Birkhauser, 2007. doi: 10.1007/978-0-8176-4573-1.
      E. A. Uehling  and  G. E. Uhlenbeck , Transport phenomena in Einstein-Bose and Fermi-Dirac gases, Phys. Rev., 43 (1933) , 552-561.  doi: 10.1103/PhysRev.43.552.
      S. Ukai, On the half-space problem for the discrete velocity model of the Boltzmann equation, in Advances in Nonlinear Partial Differential Equations and Stochastics (eds. S. Kawashima and T. Yanagisawa), World Scientific, 48 (1998), 160–174. doi: 10.1142/9789812816481_0005.
      S. Ukai , T. Yang  and  S.-H. Yu , Nonlinear boundary layers of the Boltzmann equation: Ⅰ. Existence, Comm. Math. Phys., 236 (2003) , 373-393.  doi: 10.1007/s00220-003-0822-8.
      X. Yang , The solutions for the boundary layer problem of Boltzmann equation in a half-space, J. Stat. Phys., 143 (2011) , 168-196.  doi: 10.1007/s10955-011-0158-2.
      E. Zaremba , T. Nikuni  and  A. Griffin , Dynamics of trapped Bose gases at finite temperatures, J. Low Temp. Phys., 116 (1999) , 277-345. 
  • 加载中



Article Metrics

HTML views(373) PDF downloads(188) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint