• Previous Article
    The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks
  • KRM Home
  • This Issue
  • Next Article
    Cucker-Smale model with normalized communication weights and time delay
December  2017, 10(4): 1035-1053. doi: 10.3934/krm.2017041

Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum

1. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, China

2. 

School of Mathematics, Shandong University, Jinan 250100, China

3. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

* S. Huang is the corresponding author

Received  September 2015 Revised  November 2016 Published  March 2017

This paper considers the initial boundary problem to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. The global existence and uniqueness of large strong solutions are established when the heat conductivity coefficient
$κ(θ)$
satisfies
$C_{1}(1+\theta^q)\leq \kappa(\theta)\leq C_2(1+\theta^q)$
for some constants
$q>0$
, and
$C_1,C_2>0$
.
Citation: Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic and Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041
References:
[1]

A. A. Amosov and A. A. Zlotnik, Global generalized solutions of the equations of the one-dimensional motion of a viscous heat-conducting gas, Sov. Mat. Dokl., 38 (1989), 1-5. 

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007), 57-90.  doi: 10.1016/j.matpur.2006.11.001.

[3]

H. Cabannes, Theoretical Magnetofluiddynamics Academic Press, New York, London, 1970.

[4]

G.-Q. Chen and D.-H. Wang, Globla solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376.  doi: 10.1006/jdeq.2001.4111.

[5]

G.-Q. Chen and D.-H. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamics equations, Z. Angew. Math. Phys., 54 (2003), 608-632.  doi: 10.1007/s00033-003-1017-z.

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations, 228 (2006), 377-411.  doi: 10.1016/j.jde.2006.05.001.

[7]

B. Ducomet and E. Feireisl, The equations of Magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 226 (2006), 595-629.  doi: 10.1007/s00220-006-0052-y.

[8]

J.-S. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007), 691-708.  doi: 10.1007/s00220-006-0167-1.

[9]

J.-S. FanS. Jiang and G. Nakamura, Stability of weak solutions to equations of magnetohydrodynamics with Lebesgue initial data, J. Differential Equations, 251 (2011), 2025-2036.  doi: 10.1016/j.jde.2011.06.019.

[10]

J.-S. Fan and W.-H. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637-3660.  doi: 10.1016/j.na.2007.10.005.

[11]

J.-S Fan and W.-H. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392-409.  doi: 10.1016/j.nonrwa.2007.10.001.

[12]

E. Feireisl, Dynamics Of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26 Oxford University Press, Oxford, 2004.

[13]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804.  doi: 10.1007/s00033-005-4057-8.

[14]

X.-P. Hu and D.-H. Wang, Global existence and large-time behavior of solutions to the threedimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.

[15]

X.-P. Hu and D.-H. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284.  doi: 10.1007/s00220-008-0497-2.

[16]

X.-P. Hu and D.-H. Wang, Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations, J. Differential Equations, 245 (2008), 2176-2198.  doi: 10.1016/j.jde.2008.07.019.

[17]

Y.-X. Hu and Q.-C. Ju, Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity, Z. Angew. Math. Phys., 66 (2015), 865-889.  doi: 10.1007/s00033-014-0446-1.

[18]

X. -D. Huang and J. Li, Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier-Stokes System with Vacuum and Large Oscillations arXiv: 1107.4655v2, [math. ph].

[19]

A. Jeffrey and T. Taniuti, Non-Linear Wave Propagation. With Applications To Physics And Magnetohydrodynamics, Academic Press, New York, 1964.

[20]

S. Kawashima, Smooth global solutions for two-dimensional equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 207-222.  doi: 10.1007/BF03167869.

[21]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384-387.  doi: 10.3792/pjaa.58.384.

[22]

B. Kawohl, Global existence of large solutions to initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas, J. Differential Equations, 58 (1985), 76-103.  doi: 10.1016/0022-0396(85)90023-3.

[23]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initialboundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech. , 41 (1977), 273–282, translated from Prikl. Mat. Meh. , 41 (1977), 282–291 (Russian). doi: 10.1016/0021-8928(77)90011-9.

[24]

A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics Addison-Wesley, Reading, Massachusetts, 1965.

[25]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media Oxford-London-New York-Paris; Addison-Wesley Publishing Co. , Inc. , Reading, Mass. 1960.

[26]

F.-C. Li and H.-Y. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109-126.  doi: 10.1017/S0308210509001632.

[27]

X.-L. LiN. Su and D.-H. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data, J. Hyperbolic Differ. Equ., 8 (2011), 415-436.  doi: 10.1142/S0219891611002457.

[28]

T.-P Liu and Y. Zeng, Large-time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997), viii+120 pp.  doi: 10.1090/memo/0599.

[29]

R.-H. Pan and W.-Z. Zhang, Compressible Navier-Stokes equations with temperature dependent heat conductivity, Commun. Math. Sci., 13 (2015), 401-425.  doi: 10.4310/CMS.2015.v13.n2.a7.

[30]

R. V. Polovin and V. P. Demutskii, Fundamentals Of Magnetohydrodynamics, Consultants Bureau, New York, 1990.

[31]

G. Ströhmer, About compressible viscous fluid flow in a bounded region, Pacific J. Math., 143 (1990), 359-375.  doi: 10.2140/pjm.1990.143.359.

[32]

A. Suen and D. Hoff, About compressible viscous fluid flow in a bounded region, Pacific J. Math., 143 (1990), 359-375.  doi: 10.1007/s00205-012-0498-3.

[33]

E. Tsyganov and D. Hoff, Systems of partial differential equations of mixed hyperbolic-parabolic type, J. Differential Equations, 204 (2004), 163-201.  doi: 10.1016/j.jde.2004.03.010.

[34]

T. UmedaS. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.  doi: 10.1007/BF03167068.

[35]

A. I. Vol'pert and S. I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, (Russian), Mat. Sb. (N.S.), 87(129) (1972), 504-528. 

[36]

D.-H. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441.  doi: 10.1137/S0036139902409284.

[37]

H. Wen and C. Zhu, Global classical large solutions to Navier-Stokes equations for viscous compressible and heat conducting fluids with vacuum, SIAM J. Math. Anal., 45 (2013), 431-468.  doi: 10.1137/120877829.

[38]

H.-Y. Wen and C.-J. Zhu, Global symmetric classical and strong solutions of the full compressible Navier-Stokes equations with vacuum and large initial data, J. Math. Pures Appl.(9), 102 (2014), 498-545.  doi: 10.1016/j.matpur.2013.12.003.

[39]

J.-W. ZhangS. Jiang and F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics, Math. Models Methods Appl. Sci., 19 (2009), 833-875.  doi: 10.1142/S0218202509003644.

[40]

A. A. Zlotnik and A. A. Amosov, On stability of generalized solutions to the equations of one-dimensional motion of a viscous heat-conducting gas, Sib. Math. J., 38 (1997), 663-684.  doi: 10.1007/BF02674573.

[41]

A. A. Zlotnik and A. A. Amosov, Stability of generalized solutions to equations of one-dimensional motion of viscous heat conducting gases, Math. Notes, 63 (1998), 736-746.  doi: 10.1007/BF02312766.

show all references

References:
[1]

A. A. Amosov and A. A. Zlotnik, Global generalized solutions of the equations of the one-dimensional motion of a viscous heat-conducting gas, Sov. Mat. Dokl., 38 (1989), 1-5. 

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007), 57-90.  doi: 10.1016/j.matpur.2006.11.001.

[3]

H. Cabannes, Theoretical Magnetofluiddynamics Academic Press, New York, London, 1970.

[4]

G.-Q. Chen and D.-H. Wang, Globla solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 182 (2002), 344-376.  doi: 10.1006/jdeq.2001.4111.

[5]

G.-Q. Chen and D.-H. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamics equations, Z. Angew. Math. Phys., 54 (2003), 608-632.  doi: 10.1007/s00033-003-1017-z.

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations, 228 (2006), 377-411.  doi: 10.1016/j.jde.2006.05.001.

[7]

B. Ducomet and E. Feireisl, The equations of Magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 226 (2006), 595-629.  doi: 10.1007/s00220-006-0052-y.

[8]

J.-S. FanS. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 270 (2007), 691-708.  doi: 10.1007/s00220-006-0167-1.

[9]

J.-S. FanS. Jiang and G. Nakamura, Stability of weak solutions to equations of magnetohydrodynamics with Lebesgue initial data, J. Differential Equations, 251 (2011), 2025-2036.  doi: 10.1016/j.jde.2011.06.019.

[10]

J.-S. Fan and W.-H. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637-3660.  doi: 10.1016/j.na.2007.10.005.

[11]

J.-S Fan and W.-H. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392-409.  doi: 10.1016/j.nonrwa.2007.10.001.

[12]

E. Feireisl, Dynamics Of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26 Oxford University Press, Oxford, 2004.

[13]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics, Z. Angew. Math. Phys., 56 (2005), 791-804.  doi: 10.1007/s00033-005-4057-8.

[14]

X.-P. Hu and D.-H. Wang, Global existence and large-time behavior of solutions to the threedimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.

[15]

X.-P. Hu and D.-H. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284.  doi: 10.1007/s00220-008-0497-2.

[16]

X.-P. Hu and D.-H. Wang, Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations, J. Differential Equations, 245 (2008), 2176-2198.  doi: 10.1016/j.jde.2008.07.019.

[17]

Y.-X. Hu and Q.-C. Ju, Global large solutions of magnetohydrodynamics with temperature-dependent heat conductivity, Z. Angew. Math. Phys., 66 (2015), 865-889.  doi: 10.1007/s00033-014-0446-1.

[18]

X. -D. Huang and J. Li, Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier-Stokes System with Vacuum and Large Oscillations arXiv: 1107.4655v2, [math. ph].

[19]

A. Jeffrey and T. Taniuti, Non-Linear Wave Propagation. With Applications To Physics And Magnetohydrodynamics, Academic Press, New York, 1964.

[20]

S. Kawashima, Smooth global solutions for two-dimensional equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 207-222.  doi: 10.1007/BF03167869.

[21]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384-387.  doi: 10.3792/pjaa.58.384.

[22]

B. Kawohl, Global existence of large solutions to initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas, J. Differential Equations, 58 (1985), 76-103.  doi: 10.1016/0022-0396(85)90023-3.

[23]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initialboundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech. , 41 (1977), 273–282, translated from Prikl. Mat. Meh. , 41 (1977), 282–291 (Russian). doi: 10.1016/0021-8928(77)90011-9.

[24]

A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics Addison-Wesley, Reading, Massachusetts, 1965.

[25]

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media Oxford-London-New York-Paris; Addison-Wesley Publishing Co. , Inc. , Reading, Mass. 1960.

[26]

F.-C. Li and H.-Y. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109-126.  doi: 10.1017/S0308210509001632.

[27]

X.-L. LiN. Su and D.-H. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data, J. Hyperbolic Differ. Equ., 8 (2011), 415-436.  doi: 10.1142/S0219891611002457.

[28]

T.-P Liu and Y. Zeng, Large-time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997), viii+120 pp.  doi: 10.1090/memo/0599.

[29]

R.-H. Pan and W.-Z. Zhang, Compressible Navier-Stokes equations with temperature dependent heat conductivity, Commun. Math. Sci., 13 (2015), 401-425.  doi: 10.4310/CMS.2015.v13.n2.a7.

[30]

R. V. Polovin and V. P. Demutskii, Fundamentals Of Magnetohydrodynamics, Consultants Bureau, New York, 1990.

[31]

G. Ströhmer, About compressible viscous fluid flow in a bounded region, Pacific J. Math., 143 (1990), 359-375.  doi: 10.2140/pjm.1990.143.359.

[32]

A. Suen and D. Hoff, About compressible viscous fluid flow in a bounded region, Pacific J. Math., 143 (1990), 359-375.  doi: 10.1007/s00205-012-0498-3.

[33]

E. Tsyganov and D. Hoff, Systems of partial differential equations of mixed hyperbolic-parabolic type, J. Differential Equations, 204 (2004), 163-201.  doi: 10.1016/j.jde.2004.03.010.

[34]

T. UmedaS. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.  doi: 10.1007/BF03167068.

[35]

A. I. Vol'pert and S. I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, (Russian), Mat. Sb. (N.S.), 87(129) (1972), 504-528. 

[36]

D.-H. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 63 (2003), 1424-1441.  doi: 10.1137/S0036139902409284.

[37]

H. Wen and C. Zhu, Global classical large solutions to Navier-Stokes equations for viscous compressible and heat conducting fluids with vacuum, SIAM J. Math. Anal., 45 (2013), 431-468.  doi: 10.1137/120877829.

[38]

H.-Y. Wen and C.-J. Zhu, Global symmetric classical and strong solutions of the full compressible Navier-Stokes equations with vacuum and large initial data, J. Math. Pures Appl.(9), 102 (2014), 498-545.  doi: 10.1016/j.matpur.2013.12.003.

[39]

J.-W. ZhangS. Jiang and F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics, Math. Models Methods Appl. Sci., 19 (2009), 833-875.  doi: 10.1142/S0218202509003644.

[40]

A. A. Zlotnik and A. A. Amosov, On stability of generalized solutions to the equations of one-dimensional motion of a viscous heat-conducting gas, Sib. Math. J., 38 (1997), 663-684.  doi: 10.1007/BF02674573.

[41]

A. A. Zlotnik and A. A. Amosov, Stability of generalized solutions to equations of one-dimensional motion of viscous heat conducting gases, Math. Notes, 63 (1998), 736-746.  doi: 10.1007/BF02312766.

[1]

Xin Zhong. Global well-posedness to the nonhomogeneous magneto-micropolar fluid equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022102

[2]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[3]

Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026

[4]

Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4201-4211. doi: 10.3934/dcdss.2021114

[5]

Xumin Gu. Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the non-collinearity condition. Communications on Pure and Applied Analysis, 2019, 18 (2) : 569-602. doi: 10.3934/cpaa.2019029

[6]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic and Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[7]

Xin Zhong. Global strong solution to the nonhomogeneous micropolar fluid equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021296

[8]

Xin Zhong. Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum. Communications on Pure and Applied Analysis, 2022, 21 (2) : 493-515. doi: 10.3934/cpaa.2021185

[9]

Xiaoxiao Suo, Quansen Jiu. Global well-posedness of 2D incompressible Magnetohydrodynamic equations with horizontal dissipation. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022063

[10]

Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158

[11]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[12]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[13]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[14]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure and Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

[15]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic and Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[16]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[17]

Kunquan Li, Yaobin Ou. Global wellposedness of vacuum free boundary problem of isentropic compressible magnetohydrodynamic equations with axisymmetry. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 487-522. doi: 10.3934/dcdsb.2021052

[18]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[19]

Huy Tuan Nguyen, Nguyen Anh Tuan, Chao Yang. Global well-posedness for fractional Sobolev-Galpern type equations. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2637-2665. doi: 10.3934/dcds.2021206

[20]

Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (169)
  • HTML views (132)
  • Cited by (15)

Other articles
by authors

[Back to Top]