|
G. W. Alldredge
, C. D. Hauck
, D. P. O'Leary
and A. L. Tits
, Adaptive change of basis in entropy-based moment closures for linear kinetic equations, Journal of Computational Physics, 258 (2014)
, 489-508.
doi: 10.1016/j.jcp.2013.10.049.
|
|
G. W. Alldredge
, C. D. Hauck
and A. L. Tits
, High-Order Entropy-Based Closures for Linear Transport in Slab Geometry Ⅱ: A Computational Study of the Optimization Problem, SIAM Journal on Scientific Computing, 34 (2012)
, B361-B391.
doi: 10.1137/11084772X.
|
|
G. W. Alldredge
and F. Schneider
, A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension, Journal of Computational Physics, 295 (2015)
, 665-684.
doi: 10.1016/j.jcp.2015.04.034.
|
|
U. Ascher
, S. Ruuth
and R. Spiteri
, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Applied Numerical Mathematics, 25 (1997)
, 151-167.
doi: 10.1016/S0168-9274(97)00056-1.
|
|
G. I. Bell and S. Glasstone,
Nuclear Reactor Theory Technical report, Division of Technical Information, US Atomic Energy Commission, 1970.
|
|
M. A. Blanco
, M. Flórez
and M. Bermejo
, Evaluation of the rotation matrices in the basis of real spherical harmonics, Journal of Molecular Structure, 419 (1997)
, 19-27.
doi: 10.1016/S0166-1280(97)00185-1.
|
|
T. A. Brunner
and J. P. Holloway
, One-dimensional Riemann solvers and the maximum entropy closure, Journal of Quantitative Spectroscopy and Radiative Transfer, 69 (2001)
, 543-566.
doi: 10.1016/S0022-4073(00)00099-6.
|
|
T. A. Brunner
and J. P. Holloway
, Two-dimensional time dependent Riemann solvers for neutron transport, Journal of Computational Physics, 210 (2005)
, 386-399.
doi: 10.1016/j.jcp.2005.04.011.
|
|
J. A. Carrillo
, A. Klar
and A. Roth
, Single to double mill small noise transition via semi-lagrangian finite volume methods, Commun. Math. Sci., 14 (2016)
, 1111-1136.
doi: 10.4310/CMS.2016.v14.n4.a12.
|
|
R. E. R. Curto and L. A. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math, 17 (1991), 603–635, URL https://www.math.uh.edu/~hjm/v017n4/
0603CURTO.pdf
|
|
B. Dubroca
and J.-L. Feugeas
, Entropic moment closure hierarchy for the radiative transfer equation, C. R. Acad. Sci. Paris Ser. I, 329 (1999)
, 915-920.
doi: 10.1016/S0764-4442(00)87499-6.
|
|
B. Dubroca
and A. Klar
, Half-moment closure for radiative transfer equations, Journal of Computational Physics, 180 (2002)
, 584-596.
doi: 10.1006/jcph.2002.7106.
|
|
A. S. Eddington,
The Internal Constitution of the Stars Dover, 1926.
|
|
A. Ern and J. L. Guermond,
Theory and Practice of Finite Elements Applied Mathematical Sciences, Springer New York, 2004, https://books.google.de/books?id=CCjm79FbJbcC.
doi: 10.1007/978-1-4757-4355-5.
|
|
G. D. Fies and M. Vianello, Trigonometric Gaussian quadrature on subintervals of the period, Electronic Transactions on Numerical Analysis, 39 (2012), 102–112, URL http://www.emis. ams.org/journals/ETNA/vol.39.2012/pp102-112.dir/pp102-112.pdf.
|
|
G. D. Fies
and M. Vianello
, Trigonometric Gaussian quadrature on subintervals of the period, Electronic Transactions on Numerical Analysis, 39 (2012)
, 102-112.
|
|
M. Frank
, Partial moment entropy approximation to radiative heat transfer, Pamm, 5 (2005)
, 659-660.
doi: 10.1002/pamm.200510306.
|
|
M. Frank
, B. Dubroca
and A. Klar
, Partial moment entropy approximation to radiative heat transfer, Journal of Computational Physics, 218 (2006)
, 1-18.
doi: 10.1016/j.jcp.2006.01.038.
|
|
M. Frank
, H. Hensel
and A. Klar
, A fast and accurate moment method for the Fokker-Planck equation and applications to electron radiotherapy, SIAM Journal on Applied Mathematics, 67 (2007)
, 582-603.
doi: 10.1137/06065547X.
|
|
W. Fulton
, Eigenvalues of sums of Hermitian matrices, Séminaire Bourbaki, 40 (1998)
, 255-269.
|
|
C. K. Garrett
and C. D. Hauck
, A comparison of moment closures for linear kinetic transport equations: The line source benchmark, Transport Theory and Statistical Physics, 42 (2013)
, 203-235.
doi: 10.1080/00411450.2014.910226.
|
|
E. M. Gelbard,
Simplified Spherical Harmonics Equations and Their Use in Shielding Problems Technical Report WAPD-T-1182, Bettis Atomic Power Laboratory, 1961.
|
|
C. D. Hauck
, High-order entropy-based closures for linear transport in slab geometry, Commun. Math. Sci., 9 (2011)
, 187-205.
doi: 10.4310/CMS.2011.v9.n1.a9.
|
|
C. D. Hauck
, M. Frank
and E. Olbrant
, Perturbed, entropy-based closure for radiative transfer, SIAM Journal on Applied Mathematics, 6 (2013)
, 557-587.
doi: 10.3934/krm.2013.6.557.
|
|
H. Hensel
, R. Iza-Teran
and N. Siedow
, Deterministic model for dose calculation in photon radiotherapy, to appear in Phys. Med. Biol., 51 (2006)
, 675-693.
doi: 10.1088/0031-9155/51/3/013.
|
|
J. H. Jeans
, The equations of radiative transfer of energy, Monthly Notices Royal Astronomical Society, 78 (1917)
, 28-36.
doi: 10.1093/mnras/78.1.28.
|
|
M. Junk
, Maximum entropy for reduced moment problems, Math. Meth. Mod. Appl. Sci., 10 (2000)
, 1001-1025.
doi: 10.1142/S0218202500000513.
|
|
C. Kelley,
Solving Nonlinear Equations with Newton's Method Society for Industrial and Applied Mathematics, 2003.
doi: 10.1137/1. 9780898718898.
|
|
D. S. Kershaw, Flux limiting nature's own way: A new method for numerical solution of the transport equation,
http://www.osti.gov/bridge/product.biblio.jsp?osti_id=104974.
|
|
C. J. Knight
and A. C. R. Newbery
, Trigonometric and Gaussian quadrature, Mathematics of Computation, 24 (1970)
, 575-581.
doi: 10.1090/S0025-5718-1970-0275672-4.
|
|
V. I. Lebedev and D. N. Laikov, A quadrature formula for the sphere of the 131st algebraic
order of accuracy, in Doklady. Mathematics, vol. 59, MAIK Nauka/Interperiodica, 1999,477–
481.
|
|
C. D. Levermore
, Relating eddington factors to flux limiters, Journal of Quantitative Spectroscopy and Radiative Transfer, 31 (1984)
, 149-160.
doi: 10.1016/0022-4073(84)90112-2.
|
|
C. D. Levermore
, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996)
, 1021-1065.
doi: 10.1007/BF02179552.
|
|
W. R. Martin, The application of the finite element method to the neutron transport equation,
1–232.
|
|
G. N. Minerbo
, Maximum entropy Eddington factors, J. Quant. Spectrosc. Radiat. Transfer, 20 (1978)
, 541-545.
doi: 10.1016/0022-4073(78)90024-9.
|
|
P. Monreal,
Moment Realizability and Kershaw Closures in Radiative Transfer PhD thesis, TU Aachen, 2012.
|
|
P. Monreal and M. Frank, Higher order minimum entropy approximations in radiative transfer,
arXiv preprint, arXiv: 0812.3063, 1–18, URL http://arxiv.org/abs/0812.3063.
|
|
G. C. Pomraning
, The Fokker-Planck operator as an asymptotic limit, Math. Mod. Meth. Appl. Sci., 2 (1992)
, 21-36.
doi: 10.1142/S021820259200003X.
|
|
A. Roth,
Numerical Schemes for Kinetic Equations with Applications to Fibre Lay-Down and Interacting Particles Verlag Dr. Hut, 2014.
|
|
A. Roth
, A. Klar
, B. Simeon
and E. Zharovsky
, A semi-lagrangian method for 3-d fokker planck equations for stochastic dynamical systems on the sphere, Journal of Scientific Computing, 61 (2014)
, 513-532.
doi: 10.1007/s10915-014-9835-z.
|
|
F. Schneider, First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions: Code 2016.
doi: 10.5281/zenodo.48753.
|
|
F. Schneider, Implicit-explicit, realizability-preserving first-order scheme for moment models with Lipschitz-continuous source terms, arXiv preprint, http://arxiv.org/abs/1611.01314.
|
|
F. Schneider
, Kershaw closures for linear transport equations in slab geometry Ⅰ: Model derivation, Journal of Computational Physics, 322 (2016)
, 905-919.
doi: 10.1016/j.jcp.2016.02.080.
|
|
F. Schneider,
Moment Models in Radiation Transport Equations Dr. Hut Verlag, 2016.
|
|
F. Schneider
, G. W. Alldredge
, M. Frank
and A. Klar
, Higher order mixed-moment approximations for the Fokker--Planck equation in one space dimension, SIAM Journal on Applied Mathematics, 74 (2014)
, 1087-1114.
doi: 10.1137/130934210.
|
|
F. Schneider
, G. W. Alldredge
and J. Kall
, A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry, Kinetic and Related Models, 9 (2016)
, 193-215.
doi: 10.3934/krm.2016.9.193.
|
|
B. Seibold
and M. Frank
, StaRMAP—A Second Order Staggered Grid Method for Spherical Harmonics Moment Equations of Radiative Transfer, ACM Transactions on Mathematical Software, 41 (2014)
, 1-28.
doi: 10.1145/2590808.
|
|
H. Weyl
, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Mathematische Annalen, 71 (1912)
, 441-479.
doi: 10.1007/BF01456804.
|