-
Previous Article
Generalized Huygens' principle for a reduced gravity two and a half layer model in dimension three
- KRM Home
- This Issue
-
Next Article
First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions
Diffusive limit with geometric correction of unsteady neutron transport equation
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA |
We consider the diffusive limit of an unsteady neutron transportequation in a two-dimensional plate with one-speed velocity. We show the solution can be approximated by the sum of interior solution, initial layer, and boundary layer with geometric correction. Also, we construct a counterexample to the classical theory in [
References:
[1] |
A. Bensoussan, J.-L. Lions and G. C. Papanicolaou,
Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157.
doi: 10.2977/prims/1195188427. |
[2] |
C. Cercignani, R. Illner and M. Pulvirenti,
The Mathematical Theory of Dilute Gases Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[3] |
R. Esposito, Y. Guo, C. Kim and R. Marra,
Non-Isothermal boundary in the {Boltzmann} theory and {Fourier} law, Comm. Math. Phys., 323 (2013), 177-239.
doi: 10.1007/s00220-013-1766-2. |
[4] |
E. W. Larsen,
A functional-analytic approach to the steady, one-speed neutron transport equation with anisotropic scattering, Comm. Pure Appl. Math., 27 (1974), 523-545.
doi: 10.1002/cpa.3160270404. |
[5] |
E. W. Larsen,
Solutions of the steady, one-speed neutron transport equation for small mean free paths, J. Mathematical Phys., 15 (1974), 299-305.
doi: 10.1063/1.1666642. |
[6] |
E. W. Larsen,
Neutron transport and diffusion in inhomogeneous media Ⅰ, J. Mathematical Phys., 16 (1975), 1421-1427.
doi: 10.1063/1.522714. |
[7] |
E. W. Larsen,
Asymptotic theory of the linear transport equation for small mean free paths Ⅱ, SIAM J. Appl. Math., 33 (1977), 427-445.
doi: 10.1137/0133027. |
[8] |
E. W. Larsen and J. D'Arruda,
Asymptotic theory of the linear transport equation for small mean free paths Ⅰ, Phys. Rev., 13 (1976), 1933-1939.
doi: 10.1103/PhysRevA.13.1933. |
[9] |
E. W. Larsen and G. J. Habetler,
A functional-analytic derivation of Case's full and half-range formulas, Comm. Pure Appl. Math., 26 (1973), 525-537.
doi: 10.1002/cpa.3160260406. |
[10] |
E. W. Larsen and J. B. Keller,
Asymptotic solution of neutron transport problems for small mean free paths, J. Mathematical Phys., 15 (1974), 75-81.
doi: 10.1063/1.1666510. |
[11] |
E. W. Larsen and P. F. Zweifel,
On the spectrum of the linear transport operator, J. Mathematical Phys., 15 (1974), 1987-1997.
doi: 10.1063/1.1666570. |
[12] |
E. W. Larsen and P. F. Zweifel,
Steady, one-dimensional multigroup neutron transport with anisotropic scattering, J. Mathematical Phys., 17 (1976), 1812-1820.
doi: 10.1063/1.522826. |
[13] |
L. Wu and Y. Guo,
Geometric correction for diffusive expansion of steady neutron transport equation, Comm. Math. Phys., 226 (2015), 1473-1553.
doi: 10.1007/s00220-015-2315-y. |
show all references
References:
[1] |
A. Bensoussan, J.-L. Lions and G. C. Papanicolaou,
Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157.
doi: 10.2977/prims/1195188427. |
[2] |
C. Cercignani, R. Illner and M. Pulvirenti,
The Mathematical Theory of Dilute Gases Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[3] |
R. Esposito, Y. Guo, C. Kim and R. Marra,
Non-Isothermal boundary in the {Boltzmann} theory and {Fourier} law, Comm. Math. Phys., 323 (2013), 177-239.
doi: 10.1007/s00220-013-1766-2. |
[4] |
E. W. Larsen,
A functional-analytic approach to the steady, one-speed neutron transport equation with anisotropic scattering, Comm. Pure Appl. Math., 27 (1974), 523-545.
doi: 10.1002/cpa.3160270404. |
[5] |
E. W. Larsen,
Solutions of the steady, one-speed neutron transport equation for small mean free paths, J. Mathematical Phys., 15 (1974), 299-305.
doi: 10.1063/1.1666642. |
[6] |
E. W. Larsen,
Neutron transport and diffusion in inhomogeneous media Ⅰ, J. Mathematical Phys., 16 (1975), 1421-1427.
doi: 10.1063/1.522714. |
[7] |
E. W. Larsen,
Asymptotic theory of the linear transport equation for small mean free paths Ⅱ, SIAM J. Appl. Math., 33 (1977), 427-445.
doi: 10.1137/0133027. |
[8] |
E. W. Larsen and J. D'Arruda,
Asymptotic theory of the linear transport equation for small mean free paths Ⅰ, Phys. Rev., 13 (1976), 1933-1939.
doi: 10.1103/PhysRevA.13.1933. |
[9] |
E. W. Larsen and G. J. Habetler,
A functional-analytic derivation of Case's full and half-range formulas, Comm. Pure Appl. Math., 26 (1973), 525-537.
doi: 10.1002/cpa.3160260406. |
[10] |
E. W. Larsen and J. B. Keller,
Asymptotic solution of neutron transport problems for small mean free paths, J. Mathematical Phys., 15 (1974), 75-81.
doi: 10.1063/1.1666510. |
[11] |
E. W. Larsen and P. F. Zweifel,
On the spectrum of the linear transport operator, J. Mathematical Phys., 15 (1974), 1987-1997.
doi: 10.1063/1.1666570. |
[12] |
E. W. Larsen and P. F. Zweifel,
Steady, one-dimensional multigroup neutron transport with anisotropic scattering, J. Mathematical Phys., 17 (1976), 1812-1820.
doi: 10.1063/1.522826. |
[13] |
L. Wu and Y. Guo,
Geometric correction for diffusive expansion of steady neutron transport equation, Comm. Math. Phys., 226 (2015), 1473-1553.
doi: 10.1007/s00220-015-2315-y. |
[1] |
Christophe Berthon, Rodolphe Turpault. A numerical correction of the $M1$-model in the diffusive limit. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 245-255. doi: 10.3934/dcdss.2012.5.245 |
[2] |
J-F. Clouët, R. Sentis. Milne problem for non-grey radiative transfer. Kinetic and Related Models, 2009, 2 (2) : 345-362. doi: 10.3934/krm.2009.2.345 |
[3] |
Leif Arkeryd, Anne Nouri. A Milne problem from a Bose condensate with excitations. Kinetic and Related Models, 2013, 6 (4) : 671-686. doi: 10.3934/krm.2013.6.671 |
[4] |
Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108 |
[5] |
Yu Mao, Jérôme Gilles. Non rigid geometric distortions correction - Application to atmospheric turbulence stabilization. Inverse Problems and Imaging, 2012, 6 (3) : 531-546. doi: 10.3934/ipi.2012.6.531 |
[6] |
Hung-Wen Kuo. The initial layer for Rayleigh problem. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 137-170. doi: 10.3934/dcdsb.2011.15.137 |
[7] |
Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837 |
[8] |
Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253 |
[9] |
X. Liang, Roderick S. C. Wong. On a Nested Boundary-Layer Problem. Communications on Pure and Applied Analysis, 2009, 8 (1) : 419-433. doi: 10.3934/cpaa.2009.8.419 |
[10] |
Liran Rotem. Banach limit in convexity and geometric means for convex bodies. Electronic Research Announcements, 2016, 23: 41-51. doi: 10.3934/era.2016.23.005 |
[11] |
A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213 |
[12] |
N. D. Alikakos, P. W. Bates, J. W. Cahn, P. C. Fife, G. Fusco, G. B. Tanoglu. Analysis of a corner layer problem in anisotropic interfaces. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 237-255. doi: 10.3934/dcdsb.2006.6.237 |
[13] |
Liping Wang, Chunyi Zhao. Solutions with clustered bubbles and a boundary layer of an elliptic problem. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2333-2357. doi: 10.3934/dcds.2014.34.2333 |
[14] |
Liping Wang, Juncheng Wei. Solutions with interior bubble and boundary layer for an elliptic problem. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 333-351. doi: 10.3934/dcds.2008.21.333 |
[15] |
Nurul Hafizah Zainal Abidin, Nor Fadzillah Mohd Mokhtar, Zanariah Abdul Majid. Onset of Benard-Marangoni instabilities in a double diffusive binary fluid layer with temperature-dependent viscosity. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 413-421. doi: 10.3934/naco.2019040 |
[16] |
Shigeru Takata, Hitoshi Funagane, Kazuo Aoki. Fluid modeling for the Knudsen compressor: Case of polyatomic gases. Kinetic and Related Models, 2010, 3 (2) : 353-372. doi: 10.3934/krm.2010.3.353 |
[17] |
Casimir Emako, Luís Neves de Almeida, Nicolas Vauchelet. Existence and diffusive limit of a two-species kinetic model of chemotaxis. Kinetic and Related Models, 2015, 8 (2) : 359-380. doi: 10.3934/krm.2015.8.359 |
[18] |
Yifan Xu. Algorithms by layer-decomposition for the subgraph recognition problem with attributes. Journal of Industrial and Management Optimization, 2005, 1 (3) : 337-343. doi: 10.3934/jimo.2005.1.337 |
[19] |
Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327 |
[20] |
Kateryna Marynets. Stability analysis of the boundary value problem modelling a two-layer ocean. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2433-2445. doi: 10.3934/cpaa.2022083 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]