In this paper, we formally derive the thin spray equation for a steady Stokes gas (i.e. the equation consists in a coupling between a kinetic — Vlasov type — equation for the dispersed phase and a — steady — Stokes equation for the gas). Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard, Desvillettes, Golse, Ricci, Commun.Math.Sci., 15 (2017), 1703–1741] where the evolution of the gas is governed by the Navier-Stokes equation.
Citation: |
G. Allaire
, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. Ⅰ. Abstract framework, a volume distribution of holes, Arch. Rational Mech. Anal., 113 (1990)
, 209-259.
doi: 10.1007/BF00375065.![]() ![]() ![]() |
|
C. Bardos
, F. Golse
and C. D. Levermore
, Fluid dynamic limits of kinetic equations. Ⅰ. Formal derivations, J. Stat. Phys., 63 (1991)
, 323-344.
doi: 10.1007/BF01026608.![]() ![]() ![]() |
|
E. Bernard
, L. Desvillettes
, F. Golse
and V. Ricci
, A derivation of the Vlasov-Navier-Stokes
model for aerosol flows from kinetic theory, Commun. Math. Sci., 15 (2017)
, 1703-1741.
doi: 10.4310/CMS.2017.v15.n6.a11.![]() ![]() |
|
J. A. Carrillo
, Y.-P. Choi
and T. K. Karper
, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016)
, 273-307.
doi: 10.1016/j.anihpc.2014.10.002.![]() ![]() ![]() |
|
C. Cercignani,
Theory and Applications of the Boltzmann Equation, Elsevier, New York, 1975.
![]() |
|
F. Charles, Kinetic modelling and numerical simulations using particle methods for the transport of dust in a rarefied gas, in Proceedings of the 26th International Symposium on Rarefied
Gas Dynamics, AIP Conf. Proc. 1084 (2009), 409–414.
![]() |
|
F. Charles, Modélisation Mathématique et Étude Numérique d'un Aérosol dans un Gaz Raréfié. Application á la Simulation du Transport de Particules de Poussiére en Cas d'Accident de Perte de Vide dans ITER, Ph. D thesis, ENS Cachan, 2009.
![]() |
|
F. Charles, S. Dellacherie and J. Segré, Kinetic modeling of the transport of dust particles in a rarefied atmosphere Math. Models Methods Appl. Sci. 22 (2012), 1150021, 60 pp.
![]() |
|
Y. -P. Choi, Finite-time blow-up phenomena of Vlasov/Navier-Stokes equations and related systems J. Math. Pures Appl. (2017).
![]() |
|
Y.-P. Choi
and B. Kwon
, Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations, Nonlinearity, 28 (2015)
, 3309-3336.
doi: 10.1088/0951-7715/28/9/3309.![]() ![]() ![]() |
|
D. Cioranescu and F. Murat, Un terme étrange venu d'ailleurs, (French) [A strange term
brought from somewhere else], in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. 2, Research Notes in Mathematics, Pitman, 60 (1982),
98–138.
![]() |
|
P. Degond
and B. Lucquin-Desreux
, The asymptotics of collision operators for two species of particles of disparate masses, Math. Models Meth. Appl. Sci., 6 (1996)
, 405-436.
doi: 10.1142/S0218202596000158.![]() ![]() ![]() |
|
B. Desjardins
and M. J. Esteban
, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999)
, 59-71.
doi: 10.1007/s002050050136.![]() ![]() ![]() |
|
L. Desvillettes and F. Golse, A remark concerning the Chapman-Enskog asymptotics, in
Advances in Kinetic Theory and Computing, Series on Advances in Mathematics for Applied
Sciences, World Scientific Publications, Singapour, 22 (1994), 191–203.
![]() |
|
L. Desvillettes
, F. Golse
and V. Ricci
, The mean-field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys., 131 (2008)
, 941-967.
doi: 10.1007/s10955-008-9521-3.![]() ![]() ![]() |
|
L. Desvillettes
and J. Mathiaud
, Some aspects of the asymptotics leading from gas-particles equations towards multiphase flows equations, J. Stat. Phys., 141 (2010)
, 120-141.
doi: 10.1007/s10955-010-0044-3.![]() ![]() ![]() |
|
M. A. Gallis
, J. R. Torczyinski
and D. J. Rader
, An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte-Carlo method, Phys. Fluids, 13 (2001)
, 3482-3492.
doi: 10.1063/1.1409367.![]() ![]() |
|
D. Gérard-Varet
and M. Hillairet
, Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., 195 (2010)
, 375-407.
doi: 10.1007/s00205-008-0202-9.![]() ![]() ![]() |
|
F. Golse, Fluid dynamic limits of the kinetic theory of gases, in From Particle Systems to
Partial Differential Equations, Springer Proc. Math. Stat. , 75 (2013), 3–91.
![]() |
|
T. Goudon
, P.-E. Jabin
and A. Vasseur
, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Ⅰ. Light particles regime, Indiana Univ. Math. J., 53 (2004)
, 1495-1515.
doi: 10.1512/iumj.2004.53.2508.![]() ![]() ![]() |
|
T. Goudon
, P.-E. Jabin
and A. Vasseur
, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Ⅱ. Fine particles regime, Indiana Univ. Math. J., 53 (2004)
, 1517-1536.
doi: 10.1512/iumj.2004.53.2509.![]() ![]() ![]() |
|
K. Hamdache
, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998)
, 51-74.
doi: 10.1007/BF03167396.![]() ![]() ![]() |
|
M. Hauray
, Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19 (2009)
, 1357-1384.
doi: 10.1142/S0218202509003814.![]() ![]() ![]() |
|
M. Hillairet, On the homogenization of the Stokes problem in a perforated domain, preprint,
arXiv: 1604. 04379 [math. AP].
![]() |
|
P.-E. Jabin
and F. Otto
, Identification of the dilute regime in particle sedimentation, Comm. Math. Phys., 250 (2004)
, 415-432.
doi: 10.1007/s00220-004-1126-3.![]() ![]() ![]() |
|
S. Klainerman
and A. Majda
, Compressible and incompressible fluids, Comm. Pure and Appl. Math., 35 (1982)
, 629-651.
doi: 10.1002/cpa.3160350503.![]() ![]() ![]() |
|
L. D. Landau and E. M. Lifshitz,
Physical Kinetics. Course of Theoretical Physics, Vol. 10, Pergamon Press, 1981.
![]() |
|
P. -L. Lions,
Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models, Oxford University Press Inc. , New York, 1996.
![]() |
|
P.-L. Lions
and N. Masmoudi
, Incompressible limit for a compressible fluid, J. Math. Pures Appl., 77 (1998)
, 585-627.
doi: 10.1016/S0021-7824(98)80139-6.![]() ![]() ![]() |
|
V. A. L'vov
and E. Ya. Khruslov
, Perturbation of a viscous incompressible fluid by small particles, (Russian), Theor. Appl. Quest. Differ. Equ. Algebra, 267 (1978)
, 173-177.
![]() ![]() |
|
G. de Rham,
Differentiable Manifolds: Forms, Currents, Harmonic Forms Springer-Verlag, Berlin, 1984.
![]() |
|
Y. Sone,
Molecular Gas Dynamics. Theory, Techniques and Applications Birkhäuser, Boston, 2007.
![]() |
|
S. Taguchi, On the drag exerted on the sphere by a slow uniform flow of a rarefied gas, in
Proc. of the 29th Internat. Symp. on Rarefied Gas Dynamics, AIP Conf. Proc. , 1628 (2014),
51–59.
![]() |
|
S. Taguchi
, Asymptotic theory of a uniform flow of a rarefied gas past a sphere at low Mach numbers, J. Fluid Mech., 774 (2015)
, 363-394.
doi: 10.1017/jfm.2015.265.![]() ![]() ![]() |
|
S. Takata
, Y. Sone
and K. Aoki
, Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules, Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics, 824 (1993)
, 64-93.
doi: 10.1063/1.858655.![]() ![]() ![]() |
|
D. Wang
and C. Yu
, Global weak solution to the inhomogeneous Navier-Stokes-Vlasov equations, J. Diff. Equations, 259 (2015)
, 3976-4008.
doi: 10.1016/j.jde.2015.05.016.![]() ![]() ![]() |
|
C. Yu
, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013)
, 275-293.
doi: 10.1016/j.matpur.2013.01.001.![]() ![]() ![]() |