# American Institute of Mathematical Sciences

• Previous Article
The derivation of the linear Boltzmann equation from a Rayleigh gas particle model
• KRM Home
• This Issue
• Next Article
Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics
February  2018, 11(1): 119-135. doi: 10.3934/krm.2018007

## Mathematical modeling of a discontinuous solution of the generalized Poisson-Nernst-Planck problem in a two-phase medium

 1 Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz, NAWI Graz, Heinrichstraße 36,8010 Graz, Austria 2 Lavrentyev Institute of Hydrodynamics, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

* Corresponding author: anna.zubkova@uni-graz.at

Received  November 2016 Revised  March 2017 Published  August 2017

Fund Project: The authors are supported by the Austrian Science Fund (FWF) Project P26147-N26: "Object identification problems: numerical analysis" (PION).

In this paper a mathematical model generalizing Poisson-Nernst-Planck system is considered. The generalized model presents electrokinetics of species in a two-phase medium consisted of solid particles and a pore space. The governing relations describe cross-diffusion of the charged species together with the overall electrostatic potential. At the interface between the pore and the solid phases nonlinear electro-chemical reactions are taken into account provided by jumps of field variables. The main advantage of the generalized model is that the total mass balance is kept within our setting. As the result of the variational approach, well-posedness properties of a discontinuous solution of the problem are demonstrated and supported by the energy and entropy estimates.

Citation: Victor A. Kovtunenko, Anna V. Zubkova. Mathematical modeling of a discontinuous solution of the generalized Poisson-Nernst-Planck problem in a two-phase medium. Kinetic & Related Models, 2018, 11 (1) : 119-135. doi: 10.3934/krm.2018007
##### References:

show all references

##### References:
An example domain $\Omega = Q \cup \omega \cup \partial\omega$ with two phases $Q$ and $\omega$, the boundary $\partial\Omega$, and two faces $\partial\omega^+$ and $\partial\omega^-$ of the interface $\partial\omega$ shown in zoom.
 [1] L. Bedin, Mark Thompson. Existence theory for a Poisson-Nernst-Planck model of electrophoresis. Communications on Pure & Applied Analysis, 2013, 12 (1) : 157-206. doi: 10.3934/cpaa.2013.12.157 [2] Jianing Chen, Mingji Zhang. Boundary layer effects on ionic flows via Poisson-Nernst-Planck systems with nonuniform ion sizes. Discrete & Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021312 [3] Chia-Yu Hsieh. Stability of radial solutions of the Poisson-Nernst-Planck system in annular domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2657-2681. doi: 10.3934/dcdsb.2018269 [4] Hong Lu, Ji Li, Joseph Shackelford, Jeremy Vorenberg, Mingji Zhang. Ion size effects on individual fluxes via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Analysis without electroneutrality boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1623-1643. doi: 10.3934/dcdsb.2018064 [5] Yusheng Jia, Weishi Liu, Mingji Zhang. Qualitative properties of ionic flows via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Ion size effects. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1775-1802. doi: 10.3934/dcdsb.2016022 [6] Jonathan Zinsl. Exponential convergence to equilibrium in a Poisson-Nernst-Planck-type system with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2915-2930. doi: 10.3934/dcds.2016.36.2915 [7] Yizhao Qin, Yuxia Guo, Peng-Fei Yao. Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1555-1593. doi: 10.3934/dcds.2020086 [8] Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078 [9] Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 [10] Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 [11] Arturo Hidalgo, Lourdes Tello. On a climatological energy balance model with continents distribution. Discrete & Continuous Dynamical Systems, 2015, 35 (4) : 1503-1519. doi: 10.3934/dcds.2015.35.1503 [12] Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042 [13] James Walsh, Christopher Rackauckas. On the Budyko-Sellers energy balance climate model with ice line coupling. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2187-2216. doi: 10.3934/dcdsb.2015.20.2187 [14] Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112 [15] Annegret Glitzky. Energy estimates for electro-reaction-diffusion systems with partly fast kinetics. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 159-174. doi: 10.3934/dcds.2009.25.159 [16] Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246 [17] Alexander Mielke. Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 479-499. doi: 10.3934/dcdss.2013.6.479 [18] Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729 [19] James Walsh. Diffusive heat transport in Budyko's energy balance climate model with a dynamic ice line. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2687-2715. doi: 10.3934/dcdsb.2017131 [20] Hideo Takaoka. Energy transfer model and large periodic boundary value problem for the quintic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6351-6378. doi: 10.3934/dcds.2020283

2020 Impact Factor: 1.432

## Tools

Article outline

Figures and Tables