\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The derivation of the linear Boltzmann equation from a Rayleigh gas particle model

  • * Corresponding author: Karsten Matthies

    * Corresponding author: Karsten Matthies 
Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • A linear Boltzmann equation is derived in the Boltzmann-Grad scaling for the deterministic dynamics of many interacting particles with random initial data. We study a Rayleigh gas where a tagged particle is undergoing hard-sphere collisions with background particles, which do not interact among each other. In the Boltzmann-Grad scaling, we derive the validity of a linear Boltzmann equation for arbitrary long times under moderate assumptions on higher moments of the initial distributions of the tagged particle and the possibly non-equilibrium distribution of the background. The convergence of the empiric dynamics to the Boltzmann dynamics is shown using Kolmogorov equations for associated probability measures on collision histories.

    Mathematics Subject Classification: Primary:82C40;Secondary:35Q20, 37L05, 60K35, 76P05, 82C22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The collision parameter $\nu$

    Figure 2.  Two example trees

    Figure 3.  In the case $v'=0$ we are calculating the volume of $\Delta$, since we know the background particle cannot start in $\Delta$. For $v'\neq 0$ the cylinders get shifted but the principle is the same. (Diagram not to scale)

  •   W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems volume 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, 2011.
      L. Arlotti  and  B. Lods , Integral representation of the linear {B}oltzmann operator for granular gas dynamics with applications, Journal of Statistical Physics, 129 (2007) , 517-536.  doi: 10.1007/s10955-007-9402-1.
      J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications Springer Monographs in Mathematics. Springer-Verlag London, Ltd. , London, 2006.
      M. Bisi , J. A. Cañizo  and  B. Lods , Entropy dissipation estimates for the linear Boltzmann operator, Journal of Functional Analysis, 269 (2015) , 1028-1069.  doi: 10.1016/j.jfa.2015.05.002.
      T. Bodineau , I. Gallagher  and  L. Saint-Raymond , The Brownian motion as the limit of a deterministic system of hard-spheres, Inventiones Mathematicae, 203 (2016) , 493-553.  doi: 10.1007/s00222-015-0593-9.
      T. Bodineau , I. Gallagher  and  L. Saint-Raymond , From hard spheres dynamics to the Stokes-Fourier equations: An L2 analysis of the Boltzmann-Grad limit, Comptes Rendus Mathematique, 353 (2015) , 623-627.  doi: 10.1016/j.crma.2015.04.013.
      C. Boldrighini , L. A. Bunimovich  and  Y. G. Sinaĭ , On the Boltzmann equation for the Lorentz gas, J. Statist. Phys., 32 (1983) , 477-501.  doi: 10.1007/BF01008951.
      M. Born and H. S. Green, A general kinetic theory of liquids. ⅰ. the molecular distribution functions, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 188 (1946), 10-18.
      T. Carleman, Problemes Mathématiques Dans la Théorie Cinétique de Gaz volume 2. Almqvist & Wiksells boktr, 1957.
      C. Cercignani, The Boltzmann Equation and Its Applications volume 67 of Applied Mathematical Sciences Springer-Verlag, New York, 1988.
      C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases volume 106 of Applied Mathematical Sciences Springer-Verlag, 1994.
      D. L. Cohn, Measure Theory Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, New York, second edition, 2013.
      L. Desvillettes  and  V. Ricci , The Boltzmann-Grad limit of a stochastic Lorentz gas in a force field, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007) , 637-648. 
      I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials Zurich Lectures in Advanced Mathematics. European Mathematical Society, 2013.
      G. Gallavotti, Statistical Mechanics. A Short Treatise Theoretical and Mathematical Physics. Springer-Verlag Berlin Heidelberg, 1999.
      F. Golse , On the periodic Lorentz gas and the Lorentz kinetic equation, Ann. Fac. Sci. Toulouse Math., 17 (2008) , 735-749.  doi: 10.5802/afst.1200.
      O. E. Lanford, Dynamical systems, theory and applications: Battelle seattle 1974 rencontres, Chapter Time Evolution of Large Classical Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 38 (1975), 1-111.
      J. L. Lebowitz  and  H. Spohn , Transport properties of the Lorentz gas: Fourier's law, J. Statist. Phys., 19 (1978) , 633-654.  doi: 10.1007/BF01011774.
      J. L. Lebowitz  and  H. Spohn , Microscopic basis for Fick's law for self-diffusion, J. Statist. Phys., 28 (1982) , 539-556.  doi: 10.1007/BF01008323.
      J. L. Lebowitz  and  H. Spohn , Steady state self-diffusion at low density, J. Statist. Phys., 29 (1982) , 39-55.  doi: 10.1007/BF01008247.
      H. Lorentz , The motion of electrons in metallic bodies ⅰ, Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 7 (1905) , 438-453. 
      J. Marklof, Kinetic transport in crystals, In XVIth International Congress on Mathematical Physics, pages 162-179. World Sci. Publ. , Hackensack, NJ, 2010.
      J. Marklof  and  A. Strömbergsson , The Boltzmann-Grad limit of the periodic Lorentz gas, Ann. of Math., 174 (2011) , 225-298.  doi: 10.4007/annals.2011.174.1.7.
      K. Matthies  and  F. Theil , Validity and non-validity of propagation of chaos, Analysis and Stochastics of growth processes and Interface Models, (2008) , 101-119.  doi: 10.1093/acprof:oso/9780199239252.003.0005.
      K. Matthies  and  F. Theil , Validity and failure of the Boltzmann approximation of kinetic annihilation, Journal of Nonlinear Science, 20 (2010) , 1-46.  doi: 10.1007/s00332-009-9049-y.
      K. Matthies  and  F. Theil , A semigroup approach to the justification of kinetic theory, SIAM Journal on Mathematical Analysis, 44 (2012) , 4345-4379.  doi: 10.1137/120865598.
      F. A. Molinet , Existence, uniqueness and properties of the solutions of the {B}oltzmann kinetic equation for a weakly ionized gas. ⅰ, Journal of Mathematical Physics, 18 (1977) , 984-996.  doi: 10.1063/1.523380.
      A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations volume 44 of Applied Mathematical Sciences Springer-Verlag, 1983.
      M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials Reviews in Mathematical Physics 26 (2014), 1450001, 64 pp.
      H. Spohn , The Lorentz process converges to a random flight process, Comm. Math. Phys., 60 (1978) , 277-290.  doi: 10.1007/BF01612893.
      H. Spohn, Kinetic equations from Hamiltonian dynamics: The Markovian approximations, In Kinetic theory and gas dynamics, volume 293 of CISM Courses and Lect. , pages 183-211. Springer, Vienna, 1988.
      H. Spohn, Large Scale Dynamics of Interacting Particles Texts and Monographs in Physics. Springer Berlin Heidelberg, 1991.
      K. Uchiyama , Derivation of the Boltzmann equation from particle dynamics, Hiroshima Math. J., 18 (1988) , 245-297. 
      H. van Beijeren , O. E. Lanford , J. L. Lebowitz  and  H. Spohn , Equilibrium time correlation functions in the low-density limit, J. Statist. Phys., 22 (1980) , 237-257.  doi: 10.1007/BF01008050.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(698) PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return