American Institute of Mathematical Sciences

April  2018, 11(2): 397-408. doi: 10.3934/krm.2018018

Regularity theorems for a biological network formulation model in two space dimensions

 Department of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762, USA

Received  December 2016 Revised  May 2017 Published  January 2018

We present several regularity results for a biological network formulation model originally introduced by D. Cai and D. Hu [13]. A consequence of these results is that a stationary weak solution must be a classical one in two space dimensions. Our mathematical analysis is based upon the weakly monotone function theory and Hardy space methods.

Citation: Xiangsheng Xu. Regularity theorems for a biological network formulation model in two space dimensions. Kinetic and Related Models, 2018, 11 (2) : 397-408. doi: 10.3934/krm.2018018
References:
 [1] G. Albi, M. Artina, M. Fornasier and P. Markowich, Biological transportation networks: Modeling and simulation, Anal. Appl. (Singap.), 14 (2016), 185-206.  doi: 10.1142/S0219530515400059. [2] S. Chanillo and R. L. Wheeden, Existence and estimates of Green's function for degenerate elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 15 (1988), 309-340. [3] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), 247-286. [4] G. Di Fazio, $L^p$ Estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7), 10 (1996), 409-420. [5] L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal., 116 (1991), 101-113.  doi: 10.1007/BF00375587. [6] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton 1992. [7] F. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc., 103 (1962), 353-393.  doi: 10.1090/S0002-9947-1962-0139735-8. [8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. [9] J. Haskovec, P. Markowich and B. Perthame, Mathematical analysis of a PDE system for biological network formulation, Comm. Partial Differential Equations, 40 (2015), 918-956.  doi: 10.1080/03605302.2014.968792. [10] J. Haskovec, P. Markowich, B. Perthame and M. Schlottbom, Notes on a PDE system for biological network formulation, Nonlinear Anal, 138 (2016), 127-155.  doi: 10.1016/j.na.2015.12.018. [11] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1993. [12] D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Workshop on multi scale problems from physics, biology, and material sciences, May 28-31,2014, Shanghai. [13] D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett., 111 (2013), 138701.  doi: 10.1103/PhysRevLett.111.138701. [14] R. L. Johnson and J. C. Neugebauer, Properties of BMO functions whose reciprocals are also BMO, Z. Anal. Anwendungen, 12 (1993), 3-11.  doi: 10.4171/ZAA/583. [15] J. Kinnunen, Higher integrability with weights, Annales Academia Scientiarum Fennica Series A.I. Mathematica, 19 (1994), 355-366. [16] J. -G. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, J. Differential Equations, to appear. [17] J. J. Manfredi, Weakly monotone functions, J. Geometric Analysis, 4 (1994), 393-402.  doi: 10.1007/BF02921588. [18] S. Müller, A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc., 21 (1989), 245-248.  doi: 10.1090/S0273-0979-1989-15818-7. [19] J. R. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Studies, 134 North-Holland, Amsterdam, 1987. [20] S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations, 19 (1994), 277-319.  doi: 10.1080/03605309408821017. [21] X. Xu, Existence theorems for the quantum drift-diffusion system with mixed boundary conditions, Commun. Contemp. Math. , 18 (2016), 1550048, 21 pp.

show all references

References:
 [1] G. Albi, M. Artina, M. Fornasier and P. Markowich, Biological transportation networks: Modeling and simulation, Anal. Appl. (Singap.), 14 (2016), 185-206.  doi: 10.1142/S0219530515400059. [2] S. Chanillo and R. L. Wheeden, Existence and estimates of Green's function for degenerate elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 15 (1988), 309-340. [3] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), 247-286. [4] G. Di Fazio, $L^p$ Estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7), 10 (1996), 409-420. [5] L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal., 116 (1991), 101-113.  doi: 10.1007/BF00375587. [6] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton 1992. [7] F. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc., 103 (1962), 353-393.  doi: 10.1090/S0002-9947-1962-0139735-8. [8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. [9] J. Haskovec, P. Markowich and B. Perthame, Mathematical analysis of a PDE system for biological network formulation, Comm. Partial Differential Equations, 40 (2015), 918-956.  doi: 10.1080/03605302.2014.968792. [10] J. Haskovec, P. Markowich, B. Perthame and M. Schlottbom, Notes on a PDE system for biological network formulation, Nonlinear Anal, 138 (2016), 127-155.  doi: 10.1016/j.na.2015.12.018. [11] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1993. [12] D. Hu, Optimization, Adaptation, and Initialization of Biological Transport Networks, Workshop on multi scale problems from physics, biology, and material sciences, May 28-31,2014, Shanghai. [13] D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett., 111 (2013), 138701.  doi: 10.1103/PhysRevLett.111.138701. [14] R. L. Johnson and J. C. Neugebauer, Properties of BMO functions whose reciprocals are also BMO, Z. Anal. Anwendungen, 12 (1993), 3-11.  doi: 10.4171/ZAA/583. [15] J. Kinnunen, Higher integrability with weights, Annales Academia Scientiarum Fennica Series A.I. Mathematica, 19 (1994), 355-366. [16] J. -G. Liu and X. Xu, Partial regularity of weak solutions to a PDE system with cubic nonlinearity, J. Differential Equations, to appear. [17] J. J. Manfredi, Weakly monotone functions, J. Geometric Analysis, 4 (1994), 393-402.  doi: 10.1007/BF02921588. [18] S. Müller, A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc., 21 (1989), 245-248.  doi: 10.1090/S0273-0979-1989-15818-7. [19] J. R. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Studies, 134 North-Holland, Amsterdam, 1987. [20] S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations, 19 (1994), 277-319.  doi: 10.1080/03605309408821017. [21] X. Xu, Existence theorems for the quantum drift-diffusion system with mixed boundary conditions, Commun. Contemp. Math. , 18 (2016), 1550048, 21 pp.
 [1] Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $q$-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022002 [2] Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $p$-oscillation functional. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6785-6799. doi: 10.3934/dcds.2019231 [3] Jiao Du, Longjiang Qu, Chao Li, Xin Liao. Constructing 1-resilient rotation symmetric functions over ${\mathbb F}_{p}$ with ${q}$ variables through special orthogonal arrays. Advances in Mathematics of Communications, 2020, 14 (2) : 247-263. doi: 10.3934/amc.2020018 [4] Pak Tung Ho. Prescribing $Q$-curvature on $S^n$ in the presence of symmetry. Communications on Pure and Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033 [5] Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $L^1$-control in coefficients for quasi-linear Dirichlet boundary value problems with $BMO$-anisotropic $p$-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021 [6] Pak Tung Ho. Prescribing the $Q'$-curvature in three dimension. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096 [7] Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $m$-ary $n$-cubes $Q^m_n$. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079 [8] Daniel Heinlein, Michael Kiermaier, Sascha Kurz, Alfred Wassermann. A subspace code of size $\bf{333}$ in the setting of a binary $\bf{q}$-analog of the Fano plane. Advances in Mathematics of Communications, 2019, 13 (3) : 457-475. doi: 10.3934/amc.2019029 [9] Wei Qi. On the polycyclic codes over $\mathbb{F}_q+u\mathbb{F}_q$. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022015 [10] Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $p$-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039 [11] Pierre Gervais. A spectral study of the linearized Boltzmann operator in $L^2$-spaces with polynomial and Gaussian weights. Kinetic and Related Models, 2021, 14 (4) : 725-747. doi: 10.3934/krm.2021022 [12] Najeeb Abdulaleem. Optimality and duality for $E$-differentiable multiobjective programming problems involving $E$-type Ⅰ functions. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022004 [13] Paolo Marcellini. Regularity under general and $p,q-$ growth conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 2009-2031. doi: 10.3934/dcdss.2020155 [14] Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159 [15] Victor J. W. Guo. A family of $q$-congruences modulo the square of a cyclotomic polynomial. Electronic Research Archive, 2020, 28 (2) : 1031-1036. doi: 10.3934/era.2020055 [16] Guangfeng Dong, Changjian Liu, Jiazhong Yang. On the maximal saddle order of $p:-q$ resonant saddle. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5729-5742. doi: 10.3934/dcds.2019251 [17] Antonio Cossidente, Francesco Pavese, Leo Storme. Optimal subspace codes in ${{\rm{PG}}}(4,q)$. Advances in Mathematics of Communications, 2019, 13 (3) : 393-404. doi: 10.3934/amc.2019025 [18] Shixiong Wang, Longjiang Qu, Chao Li, Huaxiong Wang. Further improvement of factoring $N = p^r q^s$ with partial known bits. Advances in Mathematics of Communications, 2019, 13 (1) : 121-135. doi: 10.3934/amc.2019007 [19] Jiu-Gang Dong, Seung-Yeal Ha, Doheon Kim. On the Cucker-Smale ensemble with $q$-closest neighbors under time-delayed communications. Kinetic and Related Models, 2020, 13 (4) : 653-676. doi: 10.3934/krm.2020022 [20] Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3351-3386. doi: 10.3934/dcdss.2020440

2021 Impact Factor: 1.398

Metrics

• PDF downloads (174)
• HTML views (273)
• Cited by (4)

Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]