\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules

  • * Corresponding author: Milana Pavić-Čolić

    * Corresponding author: Milana Pavić-Čolić 
Abstract Full Text(HTML) Related Papers Cited by
  • We study the spatially homogeneous Boltzmann equation for Maxwell molecules, and its 1-dimensional model, the Kac equation. We prove propagation in time of stretched exponential moments of their weak solutions, both for the angular cutoff and the angular non-cutoff case. The order of the stretched exponential moments in question depends on the singularity rate of the angular kernel of the Boltzmann and the Kac equation. One of the main tools we use are Mittag-Leffler moments, which generalize the exponential ones.

    Mathematics Subject Classification: Primary: 35Q20, 35Q82; Secondary: 82C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. J. AlonsoJ. A. CañizoI. M. Gamba and C. Mouhot, A new approach to the creation and propagation of exponential moments in the Boltzmann equation, Comm. Partial Differential Equations, 38 (2013), 155-169.  doi: 10.1080/03605302.2012.715707.
    [2] L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rational Mech. Anal., 77 (1981), 11-21.  doi: 10.1007/BF00280403.
    [3] A. V. Bobylev, Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwell gas, Teoret. Mat. Fiz., 60 (1984), 280-310. 
    [4] A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, in Soviet Sci. Rev. Sect. C. Math. Phys., Vol. 7, Harwood Academic Publ., Chur, 7 (1988), 111-233.
    [5] A. V. Bobylev, Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems, J. Statist. Phys., 88 (1997), 1183-1214.  doi: 10.1007/BF02732431.
    [6] A. V. Bobylev and I. M. Gamba, Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules, Kinet. Relat. Models, 10 (2017), 573-585.  doi: 10.3934/krm.2017023.
    [7] A. V. BobylevI. M. Gamba and V. A. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions, J. Statist. Phys., 116 (2004), 1651-1682.  doi: 10.1023/B:JOSS.0000041751.11664.ea.
    [8] L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations, Arch. Rational Mech. Anal., 123 (1993), 387-404.  doi: 10.1007/BF00375586.
    [9] L. Desvillettes, About the regularizing properties of the non-cut-off Kac equation, Comm. Math. Phys., 168 (1995), 417-440.  doi: 10.1007/BF02101556.
    [10] I. M. GambaV. Panferov and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 194 (2009), 253-282.  doi: 10.1007/s00205-009-0250-9.
    [11] X. Lu and C. Mouhot, On measure solutions of the Boltzmann equation, part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363.  doi: 10.1016/j.jde.2011.10.021.
    [12] C. Mouhot, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys., 261 (2006), 629-672.  doi: 10.1007/s00220-005-1455-x.
    [13] M. Tasković, R. J. Alonso, I. M. Gamba and N. Pavlović, On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff, SIAM J. Math. Anal., 50 (2018), 834-869, arXiv: 1512.06769. doi: 10.1137/17M1117926.
    [14] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.  doi: 10.1007/s002050050106.
    [15] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam, (2002), 71-305. doi: 10.1016/S1874-5792(02)80004-0.
  • 加载中
SHARE

Article Metrics

HTML views(439) PDF downloads(183) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return