# American Institute of Mathematical Sciences

June  2018, 11(3): 647-695. doi: 10.3934/krm.2018027

## The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit

 Dipartimento di Matematica, Università di Roma "La Sapienza", P.le A. Moro, 5, 00185 Roma, Italy

* Corresponding author: Nicolo' Catapano

Received  January 2017 Revised  September 2017 Published  March 2018

We consider a system of N particles interacting via a short-range smooth potential, in a weak-coupling regime. This means that the number of particles $N$ goes to infinity and the range of the potential $ε$ goes to zero in such a way that $Nε^{2} = α$, with $α$ diverging in a suitable way. We provide a rigorous derivation of the Linear Landau equation from this particle system. The strategy of the proof consists in showing the asymptotic equivalence between the one-particle marginal and the solution of the linear Boltzmann equation with vanishing mean free path. This point follows [3] and makes use of technicalities developed in [16]. Then, following the ideas of Landau, we prove the asympotic equivalence between the solutions of the Boltzmann and Landau linear equation in the grazing collision limit.

Citation: Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic and Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027
##### References:
 [1] G. Basile, A. Nota and M. Pulvirenti, A Diffusion Limit for a Test Particle in a Random Distribution of Scatterers, Journal of Statistical Physics, 155 (2014), 1087-1111.  doi: 10.1007/s10955-014-0940-z. [2] A. V. Bobylev, M. Pulvirenti and C. Saffirio, From Particle Systems to the Landau Equation: A Consistency Result, Comm. Math. Phys., 319 (2013), 683-702.  doi: 10.1007/s00220-012-1633-6. [3] T. Bodineau, I. Gallagher and L. Saint-raymond, The brownian motion as the limit of a deterministic system of hard-spheres, L. Invent. math., 203 (2016), 493-553.  doi: 10.1007/s00222-015-0593-9. [4] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106, Springer-Verlag, New York, 1994. [5] M. Colangeli, F. Pezzotti and M. Pulvirenti, A Kac model for Fermions, M. Arch Rational Mech Anal, 216 (2015), 359-413.  doi: 10.1007/s00205-014-0809-y. [6] L. Desvillettes and V. Ricci, A Rigorous Derivation of a Linear Kinetic Equation of Fokker-Planck Type in the Limit of Grazing Collisions, Journal of Statistical Physics, 104 (2001), 1173-1189.  doi: 10.1023/A:1010461929872. [7] K.-j. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. [8] I. Gallagher, L. Saint-raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, EMS Zurich Lectures in Advanced Mathematics, 2013. [9] G. Gallavotti, Rigorous Theory Of The Boltzmann Equation In The Lorentz Gas, Nota interna Istituto di Fisica, Università di Roma, 358 (1973). [10] H. Grad, Principles of the kinetic theory of gases, Handbuch der Physik, 3 (1958), 205-294. [11] F. King, BBGKY Hierarchy for Positive Potentials, Ph. d. thesis, Department of Mathematics, Univ. California, Berkeley, 1975. [12] K. Kirkpatrick, Rigorous derivation of the landau equation in the weak coupling limit, Communications on Pure and Applied Analysis, 8 (2009), 1895-1916.  doi: 10.3934/cpaa.2009.8.1895. [13] L. Landau, Kinetic equation in the case of Coulomb interaction. (in German), Phys. Zs. Sow. Union, 100 (1936), p154. [14] O. E. Lanford, Time evolution of large classical systems, in Dynamical Systems Theory and Applications, Lecture Notes in Physics, 38 (1975), 1-111. [15] J. Lebowitz and H. Spohn, Steady state self-diffusion at low density, J. Statist. Phys., 29 (1982), 39-55.  doi: 10.1007/BF01008247. [16] M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Reviews in Mathematical Physics, 26 (2014), 1450001, 64 pp. [17] M. Pulvirenti and S. Simonella, The Boltzmann-Grad limit of a hard sphere system: Analysis of the correlation error, Inventiones mathematicae, 207 (2017), 1135-1237, arXiv: 1405.4676 doi: 10.1007/s00222-016-0682-4. [18] S. Simonella, Evolution of correlation functions in the hard sphere dynamics, Journal of Statistical Physics, 155 (2014), 1191-1221.  doi: 10.1007/s10955-013-0905-7. [19] H. Spohn, On the integrated form of the BBGKY hierarchy for hard spheres, arXiv: Math/0605068, 1-19. [20] K. Uchiyama, Derivation of the Boltzmann equation from particle dynamics, Hiroshima Mathematical Journal, 18 (1988), 245-297. [21] N. Ayi, From Newton's law to the linear Boltzmann equation without cut-offs, Commun. Math. Phys., 350 (2017), 1219-1274.  doi: 10.1007/s00220-016-2821-6.

show all references

##### References:
 [1] G. Basile, A. Nota and M. Pulvirenti, A Diffusion Limit for a Test Particle in a Random Distribution of Scatterers, Journal of Statistical Physics, 155 (2014), 1087-1111.  doi: 10.1007/s10955-014-0940-z. [2] A. V. Bobylev, M. Pulvirenti and C. Saffirio, From Particle Systems to the Landau Equation: A Consistency Result, Comm. Math. Phys., 319 (2013), 683-702.  doi: 10.1007/s00220-012-1633-6. [3] T. Bodineau, I. Gallagher and L. Saint-raymond, The brownian motion as the limit of a deterministic system of hard-spheres, L. Invent. math., 203 (2016), 493-553.  doi: 10.1007/s00222-015-0593-9. [4] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106, Springer-Verlag, New York, 1994. [5] M. Colangeli, F. Pezzotti and M. Pulvirenti, A Kac model for Fermions, M. Arch Rational Mech Anal, 216 (2015), 359-413.  doi: 10.1007/s00205-014-0809-y. [6] L. Desvillettes and V. Ricci, A Rigorous Derivation of a Linear Kinetic Equation of Fokker-Planck Type in the Limit of Grazing Collisions, Journal of Statistical Physics, 104 (2001), 1173-1189.  doi: 10.1023/A:1010461929872. [7] K.-j. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. [8] I. Gallagher, L. Saint-raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, EMS Zurich Lectures in Advanced Mathematics, 2013. [9] G. Gallavotti, Rigorous Theory Of The Boltzmann Equation In The Lorentz Gas, Nota interna Istituto di Fisica, Università di Roma, 358 (1973). [10] H. Grad, Principles of the kinetic theory of gases, Handbuch der Physik, 3 (1958), 205-294. [11] F. King, BBGKY Hierarchy for Positive Potentials, Ph. d. thesis, Department of Mathematics, Univ. California, Berkeley, 1975. [12] K. Kirkpatrick, Rigorous derivation of the landau equation in the weak coupling limit, Communications on Pure and Applied Analysis, 8 (2009), 1895-1916.  doi: 10.3934/cpaa.2009.8.1895. [13] L. Landau, Kinetic equation in the case of Coulomb interaction. (in German), Phys. Zs. Sow. Union, 100 (1936), p154. [14] O. E. Lanford, Time evolution of large classical systems, in Dynamical Systems Theory and Applications, Lecture Notes in Physics, 38 (1975), 1-111. [15] J. Lebowitz and H. Spohn, Steady state self-diffusion at low density, J. Statist. Phys., 29 (1982), 39-55.  doi: 10.1007/BF01008247. [16] M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Reviews in Mathematical Physics, 26 (2014), 1450001, 64 pp. [17] M. Pulvirenti and S. Simonella, The Boltzmann-Grad limit of a hard sphere system: Analysis of the correlation error, Inventiones mathematicae, 207 (2017), 1135-1237, arXiv: 1405.4676 doi: 10.1007/s00222-016-0682-4. [18] S. Simonella, Evolution of correlation functions in the hard sphere dynamics, Journal of Statistical Physics, 155 (2014), 1191-1221.  doi: 10.1007/s10955-013-0905-7. [19] H. Spohn, On the integrated form of the BBGKY hierarchy for hard spheres, arXiv: Math/0605068, 1-19. [20] K. Uchiyama, Derivation of the Boltzmann equation from particle dynamics, Hiroshima Mathematical Journal, 18 (1988), 245-297. [21] N. Ayi, From Newton's law to the linear Boltzmann equation without cut-offs, Commun. Math. Phys., 350 (2017), 1219-1274.  doi: 10.1007/s00220-016-2821-6.
We denote with $\sigma\in S^{2}\left(\frac{v_{1}+v_{2}}{2}\right)$ the direction of $V^{'}$ and with $\theta$ the angle between $V$ and $V^{'}$
Here $\omega = \omega(\nu, V)$ is the unit vector bisecting the angle between $-V$ and $V'$, $\nu$ is the unit vector pointing from the particle with velocity $v_{1}$ to the particle with velocity $v_{2}$ when they are about to collide. We denote with $\beta$ the angle between $-V$ and $\omega$, with $\varphi$ the angle between $-V$ and $\nu$, with $\rho = \sin\varphi$ the impact parameter and with $\theta$ the deflection angle. It results that $\theta = \pi-2\beta$
A representation of a three dimensional scattering
A representation of the tree graph $(1, 1, 2)$. At the time $t_{1}$ we create the particle $2$ on the particle $1$. Then at time $t_{2}$ we create the particle $3$ on the particle $1$. Finally at time $t_{3}$ the particle $4$ is created on the particle $2$
We used a dashed line to evidence the virtual trajectory of the fourth particle
The virtual trajectory of the praticles $i$ and $k$ and their backward history
 [1] Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic and Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557 [2] Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic and Related Models, 2021, 14 (3) : 541-570. doi: 10.3934/krm.2021015 [3] Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895 [4] Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381 [5] José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401 [6] Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic and Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045 [7] Mohamad Rachid. Incompressible Navier-Stokes-Fourier limit from the Landau equation. Kinetic and Related Models, 2021, 14 (4) : 599-638. doi: 10.3934/krm.2021017 [8] Nicolas Fournier. Particle approximation of some Landau equations. Kinetic and Related Models, 2009, 2 (3) : 451-464. doi: 10.3934/krm.2009.2.451 [9] Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446 [10] Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 [11] Tram Thi Ngoc Nguyen, Anne Wald. On numerical aspects of parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging. Inverse Problems and Imaging, 2022, 16 (1) : 89-117. doi: 10.3934/ipi.2021042 [12] Seung-Yeal Ha, Doron Levy. Particle, kinetic and fluid models for phototaxis. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 77-108. doi: 10.3934/dcdsb.2009.12.77 [13] Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic and Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021 [14] Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 [15] María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255 [16] Rainer Picard. On a comprehensive class of linear material laws in classical mathematical physics. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 339-349. doi: 10.3934/dcdss.2010.3.339 [17] Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic and Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023 [18] Seung-Yeal Ha, Eitan Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic and Related Models, 2008, 1 (3) : 415-435. doi: 10.3934/krm.2008.1.415 [19] Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic and Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57 [20] Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

2021 Impact Factor: 1.398