    June  2018, 11(3): 647-695. doi: 10.3934/krm.2018027

## The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit

 Dipartimento di Matematica, Università di Roma "La Sapienza", P.le A. Moro, 5, 00185 Roma, Italy

* Corresponding author: Nicolo' Catapano

Received  January 2017 Revised  September 2017 Published  March 2018

We consider a system of N particles interacting via a short-range smooth potential, in a weak-coupling regime. This means that the number of particles $N$ goes to infinity and the range of the potential $ε$ goes to zero in such a way that $Nε^{2} = α$, with $α$ diverging in a suitable way. We provide a rigorous derivation of the Linear Landau equation from this particle system. The strategy of the proof consists in showing the asymptotic equivalence between the one-particle marginal and the solution of the linear Boltzmann equation with vanishing mean free path. This point follows  and makes use of technicalities developed in . Then, following the ideas of Landau, we prove the asympotic equivalence between the solutions of the Boltzmann and Landau linear equation in the grazing collision limit.

Citation: Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic & Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027
##### References:
  G. Basile, A. Nota and M. Pulvirenti, A Diffusion Limit for a Test Particle in a Random Distribution of Scatterers, Journal of Statistical Physics, 155 (2014), 1087-1111.  doi: 10.1007/s10955-014-0940-z.  Google Scholar  A. V. Bobylev, M. Pulvirenti and C. Saffirio, From Particle Systems to the Landau Equation: A Consistency Result, Comm. Math. Phys., 319 (2013), 683-702.  doi: 10.1007/s00220-012-1633-6.  Google Scholar  T. Bodineau, I. Gallagher and L. Saint-raymond, The brownian motion as the limit of a deterministic system of hard-spheres, L. Invent. math., 203 (2016), 493-553.  doi: 10.1007/s00222-015-0593-9.  Google Scholar  C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106, Springer-Verlag, New York, 1994. Google Scholar  M. Colangeli, F. Pezzotti and M. Pulvirenti, A Kac model for Fermions, M. Arch Rational Mech Anal, 216 (2015), 359-413.  doi: 10.1007/s00205-014-0809-y.  Google Scholar  L. Desvillettes and V. Ricci, A Rigorous Derivation of a Linear Kinetic Equation of Fokker-Planck Type in the Limit of Grazing Collisions, Journal of Statistical Physics, 104 (2001), 1173-1189.  doi: 10.1023/A:1010461929872.  Google Scholar  K.-j. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. Google Scholar  I. Gallagher, L. Saint-raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, EMS Zurich Lectures in Advanced Mathematics, 2013. Google Scholar  G. Gallavotti, Rigorous Theory Of The Boltzmann Equation In The Lorentz Gas, Nota interna Istituto di Fisica, Università di Roma, 358 (1973).   Google Scholar  H. Grad, Principles of the kinetic theory of gases, Handbuch der Physik, 3 (1958), 205-294. Google Scholar  F. King, BBGKY Hierarchy for Positive Potentials, Ph. d. thesis, Department of Mathematics, Univ. California, Berkeley, 1975. Google Scholar  K. Kirkpatrick, Rigorous derivation of the landau equation in the weak coupling limit, Communications on Pure and Applied Analysis, 8 (2009), 1895-1916.  doi: 10.3934/cpaa.2009.8.1895.  Google Scholar  L. Landau, Kinetic equation in the case of Coulomb interaction. (in German), Phys. Zs. Sow. Union, 100 (1936), p154. Google Scholar  O. E. Lanford, Time evolution of large classical systems, in Dynamical Systems Theory and Applications, Lecture Notes in Physics, 38 (1975), 1-111. Google Scholar  J. Lebowitz and H. Spohn, Steady state self-diffusion at low density, J. Statist. Phys., 29 (1982), 39-55.  doi: 10.1007/BF01008247.  Google Scholar  M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Reviews in Mathematical Physics, 26 (2014), 1450001, 64 pp. Google Scholar  M. Pulvirenti and S. Simonella, The Boltzmann-Grad limit of a hard sphere system: Analysis of the correlation error, Inventiones mathematicae, 207 (2017), 1135-1237, arXiv: 1405.4676 doi: 10.1007/s00222-016-0682-4. Google Scholar  S. Simonella, Evolution of correlation functions in the hard sphere dynamics, Journal of Statistical Physics, 155 (2014), 1191-1221.  doi: 10.1007/s10955-013-0905-7.  Google Scholar  H. Spohn, On the integrated form of the BBGKY hierarchy for hard spheres, arXiv: Math/0605068, 1-19. Google Scholar  K. Uchiyama, Derivation of the Boltzmann equation from particle dynamics, Hiroshima Mathematical Journal, 18 (1988), 245-297. Google Scholar  N. Ayi, From Newton's law to the linear Boltzmann equation without cut-offs, Commun. Math. Phys., 350 (2017), 1219-1274.  doi: 10.1007/s00220-016-2821-6.  Google Scholar

show all references

##### References:
  G. Basile, A. Nota and M. Pulvirenti, A Diffusion Limit for a Test Particle in a Random Distribution of Scatterers, Journal of Statistical Physics, 155 (2014), 1087-1111.  doi: 10.1007/s10955-014-0940-z.  Google Scholar  A. V. Bobylev, M. Pulvirenti and C. Saffirio, From Particle Systems to the Landau Equation: A Consistency Result, Comm. Math. Phys., 319 (2013), 683-702.  doi: 10.1007/s00220-012-1633-6.  Google Scholar  T. Bodineau, I. Gallagher and L. Saint-raymond, The brownian motion as the limit of a deterministic system of hard-spheres, L. Invent. math., 203 (2016), 493-553.  doi: 10.1007/s00222-015-0593-9.  Google Scholar  C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106, Springer-Verlag, New York, 1994. Google Scholar  M. Colangeli, F. Pezzotti and M. Pulvirenti, A Kac model for Fermions, M. Arch Rational Mech Anal, 216 (2015), 359-413.  doi: 10.1007/s00205-014-0809-y.  Google Scholar  L. Desvillettes and V. Ricci, A Rigorous Derivation of a Linear Kinetic Equation of Fokker-Planck Type in the Limit of Grazing Collisions, Journal of Statistical Physics, 104 (2001), 1173-1189.  doi: 10.1023/A:1010461929872.  Google Scholar  K.-j. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. Google Scholar  I. Gallagher, L. Saint-raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, EMS Zurich Lectures in Advanced Mathematics, 2013. Google Scholar  G. Gallavotti, Rigorous Theory Of The Boltzmann Equation In The Lorentz Gas, Nota interna Istituto di Fisica, Università di Roma, 358 (1973).   Google Scholar  H. Grad, Principles of the kinetic theory of gases, Handbuch der Physik, 3 (1958), 205-294. Google Scholar  F. King, BBGKY Hierarchy for Positive Potentials, Ph. d. thesis, Department of Mathematics, Univ. California, Berkeley, 1975. Google Scholar  K. Kirkpatrick, Rigorous derivation of the landau equation in the weak coupling limit, Communications on Pure and Applied Analysis, 8 (2009), 1895-1916.  doi: 10.3934/cpaa.2009.8.1895.  Google Scholar  L. Landau, Kinetic equation in the case of Coulomb interaction. (in German), Phys. Zs. Sow. Union, 100 (1936), p154. Google Scholar  O. E. Lanford, Time evolution of large classical systems, in Dynamical Systems Theory and Applications, Lecture Notes in Physics, 38 (1975), 1-111. Google Scholar  J. Lebowitz and H. Spohn, Steady state self-diffusion at low density, J. Statist. Phys., 29 (1982), 39-55.  doi: 10.1007/BF01008247.  Google Scholar  M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Reviews in Mathematical Physics, 26 (2014), 1450001, 64 pp. Google Scholar  M. Pulvirenti and S. Simonella, The Boltzmann-Grad limit of a hard sphere system: Analysis of the correlation error, Inventiones mathematicae, 207 (2017), 1135-1237, arXiv: 1405.4676 doi: 10.1007/s00222-016-0682-4. Google Scholar  S. Simonella, Evolution of correlation functions in the hard sphere dynamics, Journal of Statistical Physics, 155 (2014), 1191-1221.  doi: 10.1007/s10955-013-0905-7.  Google Scholar  H. Spohn, On the integrated form of the BBGKY hierarchy for hard spheres, arXiv: Math/0605068, 1-19. Google Scholar  K. Uchiyama, Derivation of the Boltzmann equation from particle dynamics, Hiroshima Mathematical Journal, 18 (1988), 245-297. Google Scholar  N. Ayi, From Newton's law to the linear Boltzmann equation without cut-offs, Commun. Math. Phys., 350 (2017), 1219-1274.  doi: 10.1007/s00220-016-2821-6.  Google Scholar We denote with $\sigma\in S^{2}\left(\frac{v_{1}+v_{2}}{2}\right)$ the direction of $V^{'}$ and with $\theta$ the angle between $V$ and $V^{'}$ Here $\omega = \omega(\nu, V)$ is the unit vector bisecting the angle between $-V$ and $V'$, $\nu$ is the unit vector pointing from the particle with velocity $v_{1}$ to the particle with velocity $v_{2}$ when they are about to collide. We denote with $\beta$ the angle between $-V$ and $\omega$, with $\varphi$ the angle between $-V$ and $\nu$, with $\rho = \sin\varphi$ the impact parameter and with $\theta$ the deflection angle. It results that $\theta = \pi-2\beta$ A representation of the tree graph $(1, 1, 2)$. At the time $t_{1}$ we create the particle $2$ on the particle $1$. Then at time $t_{2}$ we create the particle $3$ on the particle $1$. Finally at time $t_{3}$ the particle $4$ is created on the particle $2$ We used a dashed line to evidence the virtual trajectory of the fourth particle The virtual trajectory of the praticles $i$ and $k$ and their backward history
  Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic & Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557  Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, 2021, 14 (3) : 541-570. doi: 10.3934/krm.2021015  Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895  Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381  José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401  Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045  Mohamad Rachid. Incompressible Navier-Stokes-Fourier limit from the Landau equation. Kinetic & Related Models, 2021, 14 (4) : 599-638. doi: 10.3934/krm.2021017  Nicolas Fournier. Particle approximation of some Landau equations. Kinetic & Related Models, 2009, 2 (3) : 451-464. doi: 10.3934/krm.2009.2.451  Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446  Tram Thi Ngoc Nguyen, Anne Wald. On numerical aspects of parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021042  Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190  Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021  Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019  Seung-Yeal Ha, Doron Levy. Particle, kinetic and fluid models for phototaxis. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 77-108. doi: 10.3934/dcdsb.2009.12.77  María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255  Rainer Picard. On a comprehensive class of linear material laws in classical mathematical physics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 339-349. doi: 10.3934/dcdss.2010.3.339  Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic & Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023  Seung-Yeal Ha, Eitan Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic & Related Models, 2008, 1 (3) : 415-435. doi: 10.3934/krm.2008.1.415  Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57  Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

2020 Impact Factor: 1.432