\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local sensitivity analysis for the Cucker-Smale model with random inputs

The work of S.-Y. Ha was supported by National Research Foundation of Korea(NRF-2017R1A2B2001864), and the work of S. Jin was supported by NSF grants DMS-1522184 and DMS-1107291, and the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin.
Abstract Full Text(HTML) Related Papers Cited by
  • We present pathwise flocking dynamics and local sensitivity analysis for the Cucker-Smale(C-S) model with random communications and initial data. For the deterministic communications, it is well known that the C-S model can model emergent local and global flocking dynamics depending on initial data and integrability of communication function. However, the communication mechanism between agents is not a priori clear and needs to be figured out from observed phenomena and data. Thus, uncertainty in communication is an intrinsic component in the flocking modeling of the C-S model. In this paper, we provide a class of admissible random uncertainties which allows us to perform the local sensitivity analysis for flocking and establish stability to the random C-S model with uncertain communication.

    Mathematics Subject Classification: Primary: 15B48; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. M. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.
    [2] S. M. Ahn and S. -Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp. doi: 10.1063/1.3496895.
    [3] G. Albi, L. Pareschi and M. Zanella, Uncertain quantification in control problems for flocking models, Math. Probl. Eng., 2015 (2015), Art. ID 850124, 14pp. doi: 10.1155/2015/850124.
    [4] J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.
    [5] J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming. Mathematical modeling of collective behavior in socio-economic and life sciences, in Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., Birkhauser Boston, Inc., Boston, MA, (2010), 297-336.
    [6] J. A. Carrillo, L. Pareschi and M. Zanella, Particle based gPC methods for mean-field models of swarming with uncertainty, Preprint.
    [7] J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models and Methods in Appl. Sci., 26 (2016), 1191-1218.  doi: 10.1142/S0218202516500287.
    [8] Y. -P. Choi, S. -Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in Active Particles Vol. Ⅰ -Theory, Models, Applications, Series: Modeling and Simulation in Science and Technology (eds. N. Bellomo, P. Degond, and E. Tadmor), Birkhauser-Springer, 1 (2017), 299-331.
    [9] F. Cucker and J.-G Dong, On flocks influenced by closest neighbors, Math. Models Methods Appl. Sci., 26 (2016), 2685-2708.  doi: 10.1142/S0218202516500639.
    [10] F. Cucker and J.-G Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.
    [11] F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.
    [12] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.
    [13] P. Degond and S. Motsch, Large-scale dynamics of the Persistent Turing Walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1022.  doi: 10.1007/s10955-008-9529-8.
    [14] R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Commun. Math. Phys., 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.
    [15] S. -Y. Ha, J. Kim and X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, To appear in Kinetic Relat. Models.
    [16] S.-Y. HaB. Kwon and M.-J. Kang, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Mod. Meth. Appl. Sci., 24 (2014), 2311-2359.  doi: 10.1142/S0218202514500225.
    [17] S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.
    [18] S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.
    [19] S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.
    [20] J. Hu and S. Jin, A stochastic Galerkin method for the Boltzmann equation with uncertainty, J. Comput. Phys., 315 (2016), 150-168.  doi: 10.1016/j.jcp.2016.03.047.
    [21] J. Hu and S. Jin, Uncertainty quantification for kinetic equations, in Uncertainty Quantification for Kinetic and Hyperbolic Equations, (eds S. Jin and L. Pareschi), 14 (2018), 193-229. doi: 10.1007/978-3-319-67110-9_6.
    [22] J. HuS. Jin and D. Xiu, A stochastic Galerkin method for Hamiltonian-Jacobi equations with uncertainty, SIAM. J. Sci. Comput., 37 (2015), 2246-2269.  doi: 10.1137/140990930.
    [23] H. -N. Huang, S. A. M. Marcantognini and N. J. Young, Chain rules for higher derivatives, The Mathematical Intelligencer, 28 (2006), 61-69, http://ambio1.leeds.ac.uk/~nicholas/abstracts/FaadiBruno3.pdf. doi: 10.1007/BF02987158.
    [24] S. Jin, J. -G. Liu and Z. Ma, Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro-macro decomposition based asymptotic preserving method, Research in Math. Sci., 4 (2017), Paper No. 15, 25 pp. doi: 10.1186/s40687-017-0105-1.
    [25] S. Jin and L. Liu, An asymptotic-preserving stochastic Galerkin method for the semicondutor Boltzmann equation with random inputs and diffusive scalings, Multiscale Model. Simu., 15 (2017), 157-183.  doi: 10.1137/15M1053463.
    [26] S. Jin, M. -B. Tran and E. Zuazua, A local sensivity analysis for a damped wave equation with random initial input, Preprint.
    [27] S. JinD. Xiu and X. Zhu, Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings, J. Comput. Phys., 289 (2015), 35-52.  doi: 10.1016/j.jcp.2015.02.023.
    [28] S. JinD. Xiu and X. Zhu, A well-balanced stochastic Galerkin method for scalar hyperbolic balance laws with random inputs, J. Sci. Comput., 67 (2016), 1198-1218.  doi: 10.1007/s10915-015-0124-2.
    [29] S. Jin and Y. Zhu, Hypocoercivity and uniform regularity for the Vlasov-Poisson-Fokker-Planck system with uncertainty and multiple Scales, To appear in SIAM J. Math. Anal.
    [30] M.-J. Kang and A. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., 25 (2015), 2153-2173.  doi: 10.1142/S0218202515500542.
    [31] T. KarperA. Mellet and K. Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale model, Math. Models Methods Appl. Sci., 25 (2015), 131-163.  doi: 10.1142/S0218202515500050.
    [32] T. KarperA. Mellet and K. Trivisa, Existence of weak solutions to kinetic flocking models, SIAM J. Math. Anal., 45 (2013), 215-243.  doi: 10.1137/120866828.
    [33] T. Karper, A. Mellet and K. Trivisa, On strong local alignment in the kinetic Cucker-Smale model, Springer Proc. Math. Stat., Springer, Heidelberg, 49 (2014), 227-242. doi: 10.1007/978-3-642-39007-4_11.
    [34] N. E. LeonardD. A. PaleyF. LekienR. SepulchreD. M. Fratantoni and R. E. Davis, Collective motion, sensor networks and ocean sampling, Proc. IEEE, 95 (2007), 48-74.  doi: 10.1109/JPROC.2006.887295.
    [35] Q. Li and L. Wang, Uniform regularity for linear kinetic equations with random input based on hypocoercivity, SIAM/ASA J. Uncertainty Quantification, 5 (2017), 1193-1219.  doi: 10.1137/16M1106675.
    [36] L. Liu and S. Jin, Hypocoercivity based Sensitivity Analysis and Spectral Convergence of the Stochastic Galerkin Approximation to Collisional Kinetic Equations with Multiple Scales and Random Inputs, Preprint.
    [37] S. Motsch and E. Tadmor, Heterophilious dynamics: Enhanced Consensus, SIAM Review, 56 (2014), 577-621.  doi: 10.1137/120901866.
    [38] S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.
    [39] D. A. PaleyN. E. LeonardR. SepulchreD. Grunbaum and J. K. Parrish, Oscillator models and collective motion, IEEE Control Systems Magazine, 27 (2007), 89-105. 
    [40] L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formation, J. of Guidance, Control and Dynamics, 32 (2009), 527-537. 
    [41] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana and S. Tarantola, Introduction to sensivity analysis, Global sensivity analysis, The Primer, (2008), 1-51.
    [42] J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2008), 694-719.  doi: 10.1137/060673254.
    [43] R. Shu and S. Jin, Uniform regularity in the random space and spectral accuracy of the stochastic Galerkin method for a kinetic-fluid two-phase flow model with random initial inputs in the light particle regime, Preprint.
    [44] E. Tadmor, Mathematical aspects of self-organized dynamics: consensus, emergence of leaders, and social hydrodynamics, SIAM News, 48 (2015).
    [45] J. Toner and Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Physical Review E, 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.
    [46] T. VicsekE. Ben-Jacob CzirókI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.
    [47] D. Xiu, Numerical Methods fo Stochastic Computations, Princeton University Presss, 2010.
    [48] D. Xiu and G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM. J. Scientific Computiong, 24 (2002), 619-644.  doi: 10.1137/S1064827501387826.
  • 加载中
SHARE

Article Metrics

HTML views(434) PDF downloads(159) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return