
-
Previous Article
Microscopic solutions of the Boltzmann-Enskog equation in the series representation
- KRM Home
- This Issue
-
Next Article
Local sensitivity analysis for the Cucker-Smale model with random inputs
Traveling wave and aggregation in a flux-limited Keller-Segel model
1. | Institut Camille Jordan, UMR 5208 CNRS/Université Claude Bernard Lyon 1, and Project-team Inria NUMED, Lyon, France |
2. | Sorbonne Universités, UPMC Univ Paris 06, Laboratoire Jacques-Louis Lions UMR CNRS 7598, Université Paris Diderot, Inria de Paris, F75005 Paris, France |
3. | Graduate School of Simulation Studies, University of Hyogo, Kobe 650-0047, Japan |
Flux-limited Keller-Segel (FLKS) model has been recently derived from kinetic transport models for bacterial chemotaxis and shown to represent better the collective movement observed experimentally. Recently, associated to the kinetic model, a new instability formalism has been discovered related to stiff chemotactic response. This motivates our study of traveling wave and aggregation in population dynamics of chemotactic cells based on the FLKS model with a population growth term.
Our study includes both numerical and theoretical contributions. In the numerical part, we uncover a variety of solution types in the one-dimensional FLKS model additionally to standard Fisher/KPP type traveling wave. The remarkable result is a counter-intuitive backward traveling wave, where the population density initially saturated in a stable state transits toward an unstable state in the local population dynamics. Unexpectedly, we also find that the backward traveling wave solution transits to a localized spiky solution as increasing the stiffness of chemotactic response.
In the theoretical part, we obtain a novel analytic formula for the minimum traveling speed which includes the counter-balancing effect of chemotactic drift vs. reproduction/diffusion in the propagating front. The front propagation speeds of numerical results only slightly deviate from the minimum traveling speeds, except for the localized spiky solutions, even for the backward traveling waves. We also discover an analytic solution of unimodal traveling wave in the large-stiffness limit, which is certainly unstable but exists in a certain range of parameters.
References:
[1] |
J. Adler,
Chemotaxis in Bacteria, Science, 153 (1966), 708-716.
|
[2] |
D. G. Aronson and H. F. Weinberger,
Lecture Notes in Mathematics, Springer, 1975. |
[3] |
E. O. Budrene and H. C. Berg,
Complex patterns formed by motile cells of Escherichia coli, Nature, 349 (1991), 630-633.
doi: 10.1038/349630a0. |
[4] |
E. O. Budrene and H. C. Berg,
Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49-53.
doi: 10.1038/376049a0. |
[5] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Model Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[6] |
N. Bellomo and M. Winkler,
A degenerate chemotaxis system with flux limitation: Maximally extended solutions and abasence of gradient blow-up, Commun. Part. Diff. Eq., 42 (2017), 436-473.
doi: 10.1080/03605302.2016.1277237. |
[7] |
S. M. Block, J. E. Segall and H. C. Berg,
Adaptation kinetics in bacterial chemotaxis, J. Bacteriol., 154 (1983), 312-323.
|
[8] |
V. Calvez, Chemotactic waves of bacteria at the mesoscale, preprint, arXiv: 1607.00429. |
[9] |
A. Chertock, A. Kurganov, X. Wang and Y. Wu,
On a chemotaxis model with saturated chemotactic flux, Kinetic and related models, 5 (2012), 51-95.
doi: 10.3934/krm.2012.5.51. |
[10] |
Y. Dolak and C. Schmeiser,
Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., 51 (2005), 595-615.
doi: 10.1007/s00285-005-0334-6. |
[11] |
S. Ei, H. Izuhara and M. Mimura,
Spatio-temporal oscillations in the Keller-Segel system with logistic growth, Physica D, 277 (2014), 1-21.
doi: 10.1016/j.physd.2014.03.002. |
[12] |
C. Emako, C. Gayrard, A. Buguin, L. Almeida and N. Vauchelet, Traveling pulses for a two-species chemotaxis model,
PLoS Comput. Biol., 12 (2016), e1004843.
doi: 10. 1371/journal. pcbi. 1004843. |
[13] |
R. A. Fisher,
The advance of advantageous genes, Ann. Eugenics, 65 (1937), 335-369.
|
[14] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[15] |
F. James and N. Vauchelet,
Chemotaxis: from kinetic equations to aggregate dynamics, Nonlinear Differ. Equ. Appl., 20 (2013), 101-127.
doi: 10.1007/s00030-012-0155-4. |
[16] |
Y. V. Kalinin, L. Jiang, Y. Tu and M. Wu,
Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophys. J., 96 (2009), 2439-2448.
|
[17] |
E. F. Keller and L. A. Segel,
Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[18] |
E. F. Keller and L. A. Segel,
Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.
doi: 10.1016/0022-5193(71)90051-8. |
[19] |
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l’équation de la diffusion avec croissance de la quantité de |
[20] |
C. Liu, X. Fu, L. Liu, X. Ren, C. K. L. Chau, S. Li, L. Xiang, H. Zeng, G. Chen, L. Tang, P. Lenz, X. Cui, W. Huang, T. Hwa and J.-.D. Huang,
Sequential Establishment of stripe patterns in an expanding cell population, Science, 334 (2011), 238-241.
doi: 10.1126/science.1209042. |
[21] |
P. K. Maini, M. R. Myerscough, K. H. Winters and J. D. Murray,
Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation, Bull. Math. Biol., 53 (1991), 701-719.
|
[22] |
M. Mimura and T. Tsujikawa,
Aggregating pattern dynamics in a chemotaxis model including growth, Physica A, 230 (1996), 499-543.
doi: 10.1016/0378-4371(96)00051-9. |
[23] |
G. Nadin, B. Perthame and L. Ryzhik,
Traveling waves for the Keller-Segel system with Fisher birth terms, Interface free bound., 10 (2008), 517-538.
doi: 10.4171/IFB/200. |
[24] |
G. Nadin, B. Perthame and M. Tang,
Can a traveling wave connect two unstable state? The case of the nonlocal Fisher equation, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 553-557.
doi: 10.1016/j.crma.2011.03.008. |
[25] |
K. J. Painter and T. Hillen,
Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (2011), 363-375.
doi: 10.1016/j.physd.2010.09.011. |
[26] |
B. Perthame,
Parabolic Equations in Biology, Springer, 2015.
doi: 10.1007/978-3-319-19500-1. |
[27] |
B. Perthame, N. Vauchelet and Z. Wang, Modulation of stiff response in E. coli bacterial populations,
(in preparation). |
[28] |
B. Perthame and S. Yasuda, Stiff-response-induced instability for chemotactic bacteria and flux-limited Keller-Segel equation, preprint, arXiv: 1703.08386. |
[29] |
J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses,
PLoS Comput. Biol., 6 (2010), e1000890, 12pp.
doi: 10.1371/journal.pcbi.1000890. |
[30] |
J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan,
Directional persistence of chemotactic bacteria in a traveling concentration wave, PNAS, 108 (2011), 16235-16240.
doi: 10.1073/pnas.1101996108. |
[31] |
M. J. Tindall, P. K. Maini, S. L. Porter and J. P. Armitage,
Overview of mathematical approaches used to model bacterial chemotaxis Ⅱ: Bacterial populations, Bull. Math. Biol., 70 (2008), 1570-1607.
doi: 10.1007/s11538-008-9322-5. |
show all references
References:
[1] |
J. Adler,
Chemotaxis in Bacteria, Science, 153 (1966), 708-716.
|
[2] |
D. G. Aronson and H. F. Weinberger,
Lecture Notes in Mathematics, Springer, 1975. |
[3] |
E. O. Budrene and H. C. Berg,
Complex patterns formed by motile cells of Escherichia coli, Nature, 349 (1991), 630-633.
doi: 10.1038/349630a0. |
[4] |
E. O. Budrene and H. C. Berg,
Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49-53.
doi: 10.1038/376049a0. |
[5] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Model Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[6] |
N. Bellomo and M. Winkler,
A degenerate chemotaxis system with flux limitation: Maximally extended solutions and abasence of gradient blow-up, Commun. Part. Diff. Eq., 42 (2017), 436-473.
doi: 10.1080/03605302.2016.1277237. |
[7] |
S. M. Block, J. E. Segall and H. C. Berg,
Adaptation kinetics in bacterial chemotaxis, J. Bacteriol., 154 (1983), 312-323.
|
[8] |
V. Calvez, Chemotactic waves of bacteria at the mesoscale, preprint, arXiv: 1607.00429. |
[9] |
A. Chertock, A. Kurganov, X. Wang and Y. Wu,
On a chemotaxis model with saturated chemotactic flux, Kinetic and related models, 5 (2012), 51-95.
doi: 10.3934/krm.2012.5.51. |
[10] |
Y. Dolak and C. Schmeiser,
Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., 51 (2005), 595-615.
doi: 10.1007/s00285-005-0334-6. |
[11] |
S. Ei, H. Izuhara and M. Mimura,
Spatio-temporal oscillations in the Keller-Segel system with logistic growth, Physica D, 277 (2014), 1-21.
doi: 10.1016/j.physd.2014.03.002. |
[12] |
C. Emako, C. Gayrard, A. Buguin, L. Almeida and N. Vauchelet, Traveling pulses for a two-species chemotaxis model,
PLoS Comput. Biol., 12 (2016), e1004843.
doi: 10. 1371/journal. pcbi. 1004843. |
[13] |
R. A. Fisher,
The advance of advantageous genes, Ann. Eugenics, 65 (1937), 335-369.
|
[14] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[15] |
F. James and N. Vauchelet,
Chemotaxis: from kinetic equations to aggregate dynamics, Nonlinear Differ. Equ. Appl., 20 (2013), 101-127.
doi: 10.1007/s00030-012-0155-4. |
[16] |
Y. V. Kalinin, L. Jiang, Y. Tu and M. Wu,
Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophys. J., 96 (2009), 2439-2448.
|
[17] |
E. F. Keller and L. A. Segel,
Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[18] |
E. F. Keller and L. A. Segel,
Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.
doi: 10.1016/0022-5193(71)90051-8. |
[19] |
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l’équation de la diffusion avec croissance de la quantité de |
[20] |
C. Liu, X. Fu, L. Liu, X. Ren, C. K. L. Chau, S. Li, L. Xiang, H. Zeng, G. Chen, L. Tang, P. Lenz, X. Cui, W. Huang, T. Hwa and J.-.D. Huang,
Sequential Establishment of stripe patterns in an expanding cell population, Science, 334 (2011), 238-241.
doi: 10.1126/science.1209042. |
[21] |
P. K. Maini, M. R. Myerscough, K. H. Winters and J. D. Murray,
Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation, Bull. Math. Biol., 53 (1991), 701-719.
|
[22] |
M. Mimura and T. Tsujikawa,
Aggregating pattern dynamics in a chemotaxis model including growth, Physica A, 230 (1996), 499-543.
doi: 10.1016/0378-4371(96)00051-9. |
[23] |
G. Nadin, B. Perthame and L. Ryzhik,
Traveling waves for the Keller-Segel system with Fisher birth terms, Interface free bound., 10 (2008), 517-538.
doi: 10.4171/IFB/200. |
[24] |
G. Nadin, B. Perthame and M. Tang,
Can a traveling wave connect two unstable state? The case of the nonlocal Fisher equation, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 553-557.
doi: 10.1016/j.crma.2011.03.008. |
[25] |
K. J. Painter and T. Hillen,
Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (2011), 363-375.
doi: 10.1016/j.physd.2010.09.011. |
[26] |
B. Perthame,
Parabolic Equations in Biology, Springer, 2015.
doi: 10.1007/978-3-319-19500-1. |
[27] |
B. Perthame, N. Vauchelet and Z. Wang, Modulation of stiff response in E. coli bacterial populations,
(in preparation). |
[28] |
B. Perthame and S. Yasuda, Stiff-response-induced instability for chemotactic bacteria and flux-limited Keller-Segel equation, preprint, arXiv: 1703.08386. |
[29] |
J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses,
PLoS Comput. Biol., 6 (2010), e1000890, 12pp.
doi: 10.1371/journal.pcbi.1000890. |
[30] |
J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan,
Directional persistence of chemotactic bacteria in a traveling concentration wave, PNAS, 108 (2011), 16235-16240.
doi: 10.1073/pnas.1101996108. |
[31] |
M. J. Tindall, P. K. Maini, S. L. Porter and J. P. Armitage,
Overview of mathematical approaches used to model bacterial chemotaxis Ⅱ: Bacterial populations, Bull. Math. Biol., 70 (2008), 1570-1607.
doi: 10.1007/s11538-008-9322-5. |











| | | |
10000 -5000 | | ||
20000 -10000 | | |
| | | |
10000 -5000 | | ||
20000 -10000 | | |
| ||||||
7.0 | 1.30 | 3.08 | 21.0 | 1.065 | 5.57 | |
8.0 | 1.26 | 2.96 | 23.0 | 1.062 | 5.44 | |
9.0 | 1.23 | 2.79 | 25.0 | 1.059 | 5.28 | |
10.0 | 1.20 | 2.61 | 20.0 | 1.058 | 5.16 | |
| 1.00 | 3.09 | | 1.00 | 6.95 |
| ||||||
7.0 | 1.30 | 3.08 | 21.0 | 1.065 | 5.57 | |
8.0 | 1.26 | 2.96 | 23.0 | 1.062 | 5.44 | |
9.0 | 1.23 | 2.79 | 25.0 | 1.059 | 5.28 | |
10.0 | 1.20 | 2.61 | 20.0 | 1.058 | 5.16 | |
| 1.00 | 3.09 | | 1.00 | 6.95 |
[1] |
Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717 |
[2] |
Raul Borsche, Axel Klar, T. N. Ha Pham. Nonlinear flux-limited models for chemotaxis on networks. Networks and Heterogeneous Media, 2017, 12 (3) : 381-401. doi: 10.3934/nhm.2017017 |
[3] |
Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046 |
[4] |
Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179 |
[5] |
Federica Bubba, Benoit Perthame, Daniele Cerroni, Pasquale Ciarletta, Paolo Zunino. A coupled 3D-1D multiscale Keller-Segel model of chemotaxis and its application to cancer invasion. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2053-2086. doi: 10.3934/dcdss.2022044 |
[6] |
Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic and Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012 |
[7] |
Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023 |
[8] |
Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231 |
[9] |
Hai-Yang Jin, Zhi-An Wang. The Keller-Segel system with logistic growth and signal-dependent motility. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3023-3041. doi: 10.3934/dcdsb.2020218 |
[10] |
Hui Huang, Jian-Guo Liu. Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3463-3478. doi: 10.3934/dcdsb.2016107 |
[11] |
Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey, Jing Wang. Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1013-1036. doi: 10.3934/cpaa.2017049 |
[12] |
Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066 |
[13] |
J. Ignacio Tello. Radially symmetric solutions for a Keller-Segel system with flux limitation and nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022045 |
[14] |
Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure and Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339 |
[15] |
Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79 |
[16] |
Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure and Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287 |
[17] |
Tian Xiang. On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4911-4946. doi: 10.3934/dcds.2014.34.4911 |
[18] |
Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020 |
[19] |
Tong Li, Jeungeun Park. Traveling waves in a chemotaxis model with logistic growth. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6465-6480. doi: 10.3934/dcdsb.2019147 |
[20] |
Benjamin Söllner, Oliver Junge. A convergent Lagrangian discretization for $ p $-Wasserstein and flux-limited diffusion equations. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4227-4256. doi: 10.3934/cpaa.2020190 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]