-
Previous Article
Boundary layers and stabilization of the singular Keller-Segel system
- KRM Home
- This Issue
- Next Article
On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field
1. | Department of Mathematics, Chalmers Institute of Technology, University of Gothenburg, Gothenburg, Sweden |
2. | Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA |
The Einstein-Vlasov-Fokker-Planck system describes the kinetic diffusion dynamics of self-gravitating particles within the Einstein theory of general relativity. We study the Cauchy problem for spatially homogeneous and isotropic solutions and prove the existence of both global-in-time solutions and solutions that blow-up in finite time depending on the size of certain functions of the initial data. We also derive information on the large-time behavior of global solutions and toward the singularity for solutions which blow-up in finite time. Our results entail the existence of a phase of decelerated expansion followed by a phase of accelerated expansion, in accordance with the physical expectations in cosmology.
References:
[1] |
J. A. Alcántara, S. Calogero and S. Pankavich,
Spatially homogeneous solutions of the Vlasov-Nordström-Fokker-Planck system, J. Diff. Equations, 257 (2014), 3700-3729.
doi: 10.1016/j.jde.2014.07.006. |
[2] |
H. Andréasson, The einstein-vlasov system/kinetic theory, Living Rev. Relativity, 5 (2002), 2002-7, 33 pp, URL (cited on June 2016): http://www.livingreviews.org/lrr-2011-4.
doi: 10.12942/lrr-2002-7. |
[3] |
S. Blaise Tchapnda and N. Noutchegueme,
The surface-symmetric Einstein-Vlasov system with cosmological constant, Math. Proc. Camb. Phil. Soc., 138 (2005), 541-553.
doi: 10.1017/S0305004104008266. |
[4] |
F. Bouchut,
Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Analysis, 111 (1993), 239-258.
doi: 10.1006/jfan.1993.1011. |
[5] |
S. Calogero, A kinetic theory of diffusion in general relativity with cosmological scalar field, J. Cosm. Astrop. Phys, 11 (2011), 016, 16pp. |
[6] |
J. A. Carrillo, J. Soler and J. L. Vázquez,
Asymptotic behaviour and self-similarity for the three dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Analysis, 141 (1996), 99-132.
doi: 10.1006/jfan.1996.0123. |
[7] |
D. Fajman, J. Joudioux and J. Smulevici, The Stability of the Minkowski space for the Einstein-Vlasov system, Preprint, arXiv: 1707.06141. |
[8] |
H. Lee,
Asymptotic behaviour of the Einstein-Vlasov system with a positive cosmological constant, Math. Proc. Camb. Phil. Soc., 137 (2004), 495-509.
doi: 10.1017/S0305004104007960. |
[9] |
H. Lindblad and M. Taylor, Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge, Preprint, arXiv: 1707.06079. |
[10] |
R. Maartens and S. D. Maharaj,
Invariant solutions of Liouville's equation in Robertson-Walker space-times, Gen. Rel. Grav., 19 (1987), 1223-1234.
doi: 10.1007/BF00759102. |
[11] |
K. Ono,
Global existence of regular solutions for the Vlasov-Poisson-Fokker-Planck system, J. Math. Anal. Appl., 263 (2001), 626-636.
doi: 10.1006/jmaa.2001.7640. |
[12] |
S. Pankavich and N. Michalowksi,
Global classical solutions to the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system, Kin. Rel. Models, 8 (2015), 169-199.
doi: 10.3934/krm.2015.8.169. |
[13] |
S. Pankavich and J. Schaeffer,
Global classical solutions of the "one and one-half dimensional" Vlasov-Maxwell-Fokker-Planck system, Comm. Math. Sci., 14 (2016), 209-232.
doi: 10.4310/CMS.2016.v14.n1.a8. |
[14] |
S. Weinberg, Cosmology, Oxford University Press, Oxford, 2008. |
show all references
References:
[1] |
J. A. Alcántara, S. Calogero and S. Pankavich,
Spatially homogeneous solutions of the Vlasov-Nordström-Fokker-Planck system, J. Diff. Equations, 257 (2014), 3700-3729.
doi: 10.1016/j.jde.2014.07.006. |
[2] |
H. Andréasson, The einstein-vlasov system/kinetic theory, Living Rev. Relativity, 5 (2002), 2002-7, 33 pp, URL (cited on June 2016): http://www.livingreviews.org/lrr-2011-4.
doi: 10.12942/lrr-2002-7. |
[3] |
S. Blaise Tchapnda and N. Noutchegueme,
The surface-symmetric Einstein-Vlasov system with cosmological constant, Math. Proc. Camb. Phil. Soc., 138 (2005), 541-553.
doi: 10.1017/S0305004104008266. |
[4] |
F. Bouchut,
Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Analysis, 111 (1993), 239-258.
doi: 10.1006/jfan.1993.1011. |
[5] |
S. Calogero, A kinetic theory of diffusion in general relativity with cosmological scalar field, J. Cosm. Astrop. Phys, 11 (2011), 016, 16pp. |
[6] |
J. A. Carrillo, J. Soler and J. L. Vázquez,
Asymptotic behaviour and self-similarity for the three dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Analysis, 141 (1996), 99-132.
doi: 10.1006/jfan.1996.0123. |
[7] |
D. Fajman, J. Joudioux and J. Smulevici, The Stability of the Minkowski space for the Einstein-Vlasov system, Preprint, arXiv: 1707.06141. |
[8] |
H. Lee,
Asymptotic behaviour of the Einstein-Vlasov system with a positive cosmological constant, Math. Proc. Camb. Phil. Soc., 137 (2004), 495-509.
doi: 10.1017/S0305004104007960. |
[9] |
H. Lindblad and M. Taylor, Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge, Preprint, arXiv: 1707.06079. |
[10] |
R. Maartens and S. D. Maharaj,
Invariant solutions of Liouville's equation in Robertson-Walker space-times, Gen. Rel. Grav., 19 (1987), 1223-1234.
doi: 10.1007/BF00759102. |
[11] |
K. Ono,
Global existence of regular solutions for the Vlasov-Poisson-Fokker-Planck system, J. Math. Anal. Appl., 263 (2001), 626-636.
doi: 10.1006/jmaa.2001.7640. |
[12] |
S. Pankavich and N. Michalowksi,
Global classical solutions to the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system, Kin. Rel. Models, 8 (2015), 169-199.
doi: 10.3934/krm.2015.8.169. |
[13] |
S. Pankavich and J. Schaeffer,
Global classical solutions of the "one and one-half dimensional" Vlasov-Maxwell-Fokker-Planck system, Comm. Math. Sci., 14 (2016), 209-232.
doi: 10.4310/CMS.2016.v14.n1.a8. |
[14] |
S. Weinberg, Cosmology, Oxford University Press, Oxford, 2008. |
[1] |
Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure and Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435 |
[2] |
Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic and Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016 |
[3] |
Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 |
[4] |
Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129 |
[5] |
Lei Jing, Jiawei Sun. Global existence and long time behavior of the Ellipsoidal-Statistical-Fokker-Planck model for diatomic gases. Kinetic and Related Models, 2020, 13 (2) : 373-400. doi: 10.3934/krm.2020013 |
[6] |
Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393 |
[7] |
Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic and Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169 |
[8] |
Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 |
[9] |
Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077 |
[10] |
Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633 |
[11] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[12] |
Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic and Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043 |
[13] |
Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure and Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721 |
[14] |
Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519 |
[15] |
Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 |
[16] |
Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169 |
[17] |
Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535 |
[18] |
Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051 |
[19] |
Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827 |
[20] |
Pierre Roux, Delphine Salort. Towards a further understanding of the dynamics in the excitatory NNLIF neuron model: Blow-up and global existence. Kinetic and Related Models, 2021, 14 (5) : 819-846. doi: 10.3934/krm.2021025 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]