In general, the non-conservative approximation of coagulation-fragmentation equations (CFEs) may lead to the occurrence of gelation phenomenon. In this article, it is shown that the non-conservative approximation of CFEs can also provide the existence of mass conserving solutions to CFEs for large classes of unbounded coagulation and fragmentation kernels.
Citation: |
[1] |
R. B. Ash,
Measure, Integration and Functional Analysis, Academic Press, New York-London, 1972.
![]() ![]() |
[2] |
J. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness and density conservation, J. Stat. Phys., 61 (1990), 203-234.
doi: 10.1007/BF01013961.![]() ![]() ![]() |
[3] |
J. Banasiak and M. M. Kharroubi,
Evolutionary Equations with Applications in Natural Sciences, Springer Cham Heidelberg New York Dordrecht London, 2015.
doi: 978-3-319-11321-0;978-3-319-11322-7.![]() ![]() ![]() |
[4] |
J. P. Bourgade and F. Filbet, Convergence of a finite volume scheme for coagulation-fragmentation equations, Math. Comp., 77 (2008), 851-882.
doi: 10.1090/S0025-5718-07-02054-6.![]() ![]() ![]() |
[5] |
C. Dellacherie and P. A. Mayer,
Probabilitiés et Potentiel, Chapitres I à IV, Paris, 1975.
![]() ![]() |
[6] |
P. B. Dubovskii and I. W. Stewart, Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), 571-591.
doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q.![]() ![]() ![]() |
[7] |
M. Escobedo, Ph. Laurençot, S. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations., 195 (2003), 143-174.
doi: 10.1016/S0022-0396(03)00134-7.![]() ![]() ![]() |
[8] |
M. Escobedo, S. Mischler and B. Perthame, Gelation in coagulation and fragmentation models, Comm. Math. Phys., 231 (2002), 157-188.
doi: 10.1007/s00220-002-0680-9.![]() ![]() ![]() |
[9] |
F. Filbet and Ph. Laurençot, Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation, Archiv der Mathematik, 83 (2004), 558-567.
doi: 10.1007/s00013-004-1060-9.![]() ![]() ![]() |
[10] |
F. Filbet and Ph. Laurençot, Numerical simulation of the Smoluchowski coagulation equation, SIAM J. Sci. Comput., 25 (2004), 2004-2028.
doi: 10.1137/S1064827503429132.![]() ![]() ![]() |
[11] |
A. K. Giri, On the uniqueness for coagulation and multiple fragmentation equation, Kinet. Relat. Models, 6 (2013), 589-599.
doi: 10.3934/krm.2013.6.589.![]() ![]() ![]() |
[12] |
A. K. Giri, J. Kumar and G. Warnecke, The continuous coagulation equation with multiple fragmentation, J. Math. Anal. Appl., 374 (2011), 71-87.
doi: 10.1016/j.jmaa.2010.08.037.![]() ![]() ![]() |
[13] |
A. K. Giri, Ph. Laurençot and G. Warnecke, Weak solutions to the continuous coagulation with multiple fragmentation, Nonlinear Anal., 75 (2012), 2199-2208.
doi: 10.1016/j.na.2011.10.021.![]() ![]() ![]() |
[14] |
A. K. Giri and G. Warnecke, Uniqueness for the coagulation-fragmentation equation with strong fragmentation, Z. Angew. Math. Phys., 62 (2011), 1047-1063.
doi: 10.1007/s00033-011-0129-0.![]() ![]() ![]() |
[15] |
Ph. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.
doi: 10.1017/S0308210502000598.![]() ![]() ![]() |
[16] |
Ph. Laurençot, The Lifshitz-Slyozov equation with encounters, Math. Models Methods Appl. Sci., 11 (2001), 731-748.
doi: 10.1142/S0218202501001070.![]() ![]() ![]() |
[17] |
F. Leyvraz, Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A, 16 (1983), 2861-2873.
doi: 10.1088/0305-4470/16/12/032.![]() ![]() ![]() |
[18] |
F. Leyvraz and H. R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A, 14 (1981), 3389-3405.
doi: 10.1088/0305-4470/14/12/030.![]() ![]() ![]() |
[19] |
I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.
doi: 10.1002/mma.1670110505.![]() ![]() ![]() |
[20] |
I. W. Stewart, A uniqueness theorem for the coagulation-fragmentation equation, Math. Proc. Cambridge. Philos. Soc., 107 (1990), 573-578.
doi: 10.1017/S0305004100068821.![]() ![]() ![]() |