[1]
|
D. Armbruster, S. Martin and A. Thatcher, Elastic and inelastic collisions of swarms, Physica D: Nonlinear Phenomena, 344 (2017), 45-57.
doi: 10.1016/j.physd.2016.11.008.
|
[2]
|
D. Armbruster, S. Motsch and A. Thatcher, Swarming in bounded domains, Physica D: Nonlinear Phenomena, 344 (2017), 58-67.
doi: 10.1016/j.physd.2016.11.009.
|
[3]
|
H. Bauer,
Probability Theory, vol. 23 of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1996, Translated from the fourth (1991) German edition by Robert B. Burckel and revised by the author.
doi: 10.1515/9783110814668.
|
[4]
|
N. Bellomo, C. Bianca and V. Coscia, On the modeling of crowd dynamics: An overview and research perspectives, S$\vec{\rm e}$MA J., 54 (2011), 25-46.
|
[5]
|
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8.
|
[6]
|
L. Chen, S. Göttlich and Q. Yin, Mean field limit and propagation of chaos for a pedestrian flow model, Journal of Statistical Physics, 166 (2017), 211-229.
doi: 10.1007/s10955-016-1679-5.
|
[7]
|
A. Chertock, A. Kurganov, A. Polizzi and I. Timofeyev, Pedestrian flow models with slowdown interactions, Math. Models Methods Appl. Sci., 24 (2014), 249-275.
doi: 10.1142/S0218202513400083.
|
[8]
|
E. Cristiani, B. Piccoli and A. Tosin,
Multiscale Modeling of Pedestrian Dynamics, vol. 12 of MS&A. Modeling, Simulation and Applications, Springer, Cham, 2014.
doi: 10.1007/978-3-319-06620-2.
|
[9]
|
P. Degond, C. Appert-Rolland, M. Moussaïd, J. Pettré and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068.
doi: 10.1007/s10955-013-0805-x.
|
[10]
|
P. Degond and C. Ringhofer, Stochastic dynamics of long supply chains with random breakdowns, SIAM J. Appl. Math., 68 (2007), 59-79.
doi: 10.1137/060674302.
|
[11]
|
P. Degond, C. Appert-Rolland, J. Pettré and G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839.
doi: 10.3934/krm.2013.6.809.
|
[12]
|
G. Dimarco and S. Motsch, Self-alignment driven by jump processes: Macroscopic limit and numerical investigation, Math. Models Methods Appl. Sci., 26 (2016), 1385-1410.
doi: 10.1142/S0218202516500330.
|
[13]
|
R. Etikyala, S. Göttlich, A. Klar and S. Tiwari, Particle methods for pedestrian flow models: From microscopic to nonlocal continuum models, Math. Models Methods Appl. Sci., 24 (2014), 2503-2523.
doi: 10.1142/S0218202514500274.
|
[14]
|
I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes. Ⅱ, Classics in Mathematics, Springer-Verlag, Berlin, 2004, Translated from the Russian by S. Kotz, Reprint of the 1975 edition.
doi: 10.1007/978-3-642-61921-2.
|
[15]
|
D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415, arXiv: cond-mat/9805213.
|
[16]
|
D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Physical Review E, 51 (1998), 4282-4286, arXiv: cond-mat/9805244.
doi: 10.1103/PhysRevE.51.4282.
|
[17]
|
R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.
doi: 10.1016/S0191-2615(01)00015-7.
|
[18]
|
P.-E. Jabin, Macroscopic limit of Vlasov type equations with friction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 651-672.
doi: 10.1016/S0294-1449(00)00118-9.
|
[19]
|
P.-E. Jabin, Various levels of models for aerosols, Math. Models Methods Appl. Sci., 12 (2002), 903-919.
doi: 10.1142/S0218202502001957.
|
[20]
|
A. Jüngel, Transport Equations for Semiconductors, vol. 773 of Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-89526-8.
|
[21]
|
A. Klar, F. Schneider and O. Tse, Approximate models for stochastic dynamic systems with velocities on the sphere and associated fokker-planck equations, Kinetic and Related Models, 7 (2014), 509-529.
doi: 10.3934/krm.2014.7.509.
|
[22]
|
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511791253.
|
[23]
|
B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738.
doi: 10.1007/s00205-010-0366-y.
|
[24]
|
B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107.
doi: 10.1007/s00161-009-0100-x.
|
[25]
|
M. Schultz, Stochastic transition model for pedestrian dynamics, in Pedestrian and Evacuation Dynamics 2012, Springer International Publishing, (2013), 971-985, arXiv: 1210.5554.
doi: 10.1007/978-3-319-02447-9_81.
|
[26]
|
A. Tordeux and A. Schadschneider, A stochastic optimal velocity model for pedestrian flow, in Parallel Processing and Applied Mathematics, Springer International Publishing, 9574 (2016), 528-538.
doi: 10.1007/978-3-319-32152-3_49.
|
[27]
|
A. Tordeux and A. Schadschneider, White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves, Journal of Physics A: Mathematical and Theoretical, 49 (2016), 185101, 16pp.
doi: 10.1088/1751-8113/49/18/185101.
|