Advanced Search
Article Contents
Article Contents

Numerical study of an anisotropic Vlasov equation arising in plasma physics

  • * Corresponding author: C. Negulescu

    * Corresponding author: C. Negulescu
Abstract Full Text(HTML) Figure(12) Related Papers Cited by
  • Goal of this paper is to investigate several numerical schemes for the resolution of two anisotropic Vlasov equations. These two toy-models are obtained from a kinetic description of a tokamak plasma confined by strong magnetic fields. The simplicity of our toy-models permits to better understand the features of each scheme, in particular to investigate their asymptotic-preserving properties, in the aim to choose then the most adequate numerical scheme for upcoming, more realistic simulations.

    Mathematics Subject Classification: Primary: 35Q83, 65M06; Secondary: 65F05.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Representation of the initial condition $f_{in}$ (A) and the exact solution $f_{ex}^{\epsilon}$ at the final time $T = 1$ (B). Here $\epsilon = 1$.

    Figure 2.  Representation of the exact limit solution $f^0_{ex}(t,x)$ at the final time $T$.

    Figure 3.  Time-evolution of the exact solution at point $(x_{N_x-1},y_{N_y-1})$ in the two dimensional case (A) with $T = 12$ and $N_t = 501$; resp. at point $y_{N_y-1}$ in the one dimensional case with $T = 10$, $a = 0$ and $N_t = 501$ (B).

    Figure 4.  Representation of the numerical solution $f^{\epsilon}$ for two values of $\epsilon$, and at the final time $T$, corresponding to the IMEX scheme.

    Figure 5.  Left (A): Plot of the num. sol. $f^{\epsilon}$ for $\epsilon = 10^{-10}$, at the final time $T$. Right (B): Time-evolution of the IMEX scheme sol. at point $y_{N_y-1}$ in the 1D case for $T = 10$ and several $\epsilon$. We have added the exact solution for $\epsilon = 1$.

    Figure 6.  Time-evolution of the solution via Fourier (A) and IMEX, MM- resp. Lagrange-multiplier schemes (B), at $y_{N_y-1}$ in 1D with $T = 10$, $a = 0$, $N_t = 501$. We have added in both cases the exact solution for $\epsilon = 1$.

    Figure 7.  Evolution of the $L^{\infty}$-error between $f^{\epsilon}_{ex}(t,\cdot)$ and $f^{\epsilon}(t,\cdot)$ at final time $T = 1$ and for $\epsilon = 1$, as a function of $\Delta x$ (with $N_y = 15 001$, $N_t = 15 001$), $\Delta y$ (with $N_x = 15 001$, $N_t = 15 001$) and $\Delta t$ (with $N_x = N_y = 1 001$).

    Figure 8.  Evolution of $\eta_\epsilon(T)$ and $\gamma_\epsilon(T)$ as a function of $\epsilon$ for each scheme.

    Figure 9.  Condition number $cond(A)$ as a function of $\epsilon$ in log-log scale. The three curves correspond to the IMEX, Micro-Macro and Lagrange-multiplier schemes.

    Figure 10.  Condition number $cond(A)$ as a function of $\epsilon$ in log-log scale. The two curves correspond to the IMP and Lagrange-multiplier schemes.

    Figure 12.  Representation of the function $f^{\epsilon}$ at the final time $T$ for the IMP and Lagrange-multiplier scheme, with several values of $\epsilon$.

    Figure 11.  Representation of a cut at $x = 0$ of $f^{\epsilon}_{num}$ at the final time $T$ for the IMP and Lagrange-multiplier schemes, and several values of $\epsilon$.

  • [1] M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, Journal of Differential Equations, 249 (2010), 1620-1663.  doi: 10.1016/j.jde.2010.07.010.
    [2] F. F Chen, Plasma Physics and Controlled Fusion, 3rd edition, Springer-Verlag, New-York, 2008.
    [3] N. Crouseilles and M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits, Kinetic Related Models, 4 (2011), 441-477.  doi: 10.3934/krm.2011.4.441.
    [4] N. CrouseillesM. Lemou and F. Méhats, Asymptotic-Preserving schemes for oscillatory Vlasov-Poisson equations, Journal of Computational Physics, 248 (2013), 287-308.  doi: 10.1016/j.jcp.2013.04.022.
    [5] A. De CeccoC. Negulescu and S. Possanner, Asymptotic transition from kinetic to adiabatic electrons along magnetic field lines, SIAM MMS (Multiscale Model. Simul.), 15 (2017), 309-338.  doi: 10.1137/15M1043686.
    [6] P. DegondF. DeluzetA. LozinskiJ. Narski and C. Negulescu, Duality based asymptotic-preserving method for highly anisotropic diffusion equations, Communications in Mathematical Sciences, 10 (2012), 1-31.  doi: 10.4310/CMS.2012.v10.n1.a2.
    [7] P. DegondA. LozinskiJ. Narski and C. Negulescu, An Asymptotic-Preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition, Journal of Computational Physics, 231 (2012), 2724-2740.  doi: 10.1016/j.jcp.2011.11.040.
    [8] F. Filbet and S. Jin, An Asymptotic Preserving scheme for the ES-BGK model of the Boltzmann equation, J. Sci. Computing, 46 (2011), 204-224.  doi: 10.1007/s10915-010-9394-x.
    [9] X. GarbetY. IdomuraL. Villard and T. Watanabe, Gyrokinetic simulations of turbulent transport, Nuclear Fusion, 50 (2010).  doi: 10.1088/0029-5515/50/4/043002.
    [10] Ph. GhendrihM. Hauray and A. Nouri, Derivation of a gyrokinetic model, existence and uniqueness of specific stationary solutions, Kinetic and Related Models, 2 (2009), 707-725.  doi: 10.3934/krm.2009.2.707.
    [11] R. J. Goldston and P. H. Rutherford, Plasma Physics, Taylor & Francis Group, Boca Raton, 1995.
    [12] V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, Ph. Ghendrih, N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse and P. Bertrand, GYSELA, a full-f global gyrokinetic semi-lagrangian code for ITG turbulence simulations, Theory of Fusion Plasmas, 871 (2006), American Institute of Physics Conference Series, 100–111.
    [13] R. D. Hazeltine and J. D. Meiss, Plasma Confinement, Dover Publications, New York, 2003.
    [14] M. H. Holmes, Introduction to Numerical Methods in Differential Equations, Springer-Verlag, New York, 2007. doi: 10.1007/978-0-387-68121-4.
    [15] S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review, Rivista di Matematica della Universita di Parma, 3 (2012), 177-216. 
    [16] M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31 (2008), 334-368.  doi: 10.1137/07069479X.
    [17] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations, SIAM, Philadelphia, 2007. doi: 10.1137/1.9780898717839.
    [18] A. LozinskiJ. Narski and C. Negulescu, Highly anisotropic temperature balance equation and its asymptotic-preserving resolution, M2AN (Mathematical Modelling and Numerical Analysis), 48 (2014), 1701-1724.  doi: 10.1051/m2an/2014016.
    [19] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.
    [20] A. Mentrelli and C. Negulescu, Asymptotic-Preserving scheme for highly anisotropic non-linear diffusion equations, Journal of Comp. Phys, 231 (2012), 8229-8245.  doi: 10.1016/j.jcp.2012.08.004.
    [21] C. Negulescu, Kinetic modelling of strongly magnetized tokamak plasmas with mass disparate particles, the electron Boltzmann relation, submitted.
    [22] C. Negulescu, Asymptotic-Preserving schemes. Modeling, simulation and mathematical analysis of magnetically confined plasmas, Rivista di Matematica della Universita di Parma, 4 (2013), 265-343. 
    [23] L. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, 1997. doi: 10.1137/1.9780898719574.
  • 加载中



Article Metrics

HTML views(284) PDF downloads(165) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint