-
Previous Article
Modeling of macroscopic stresses in a dilute suspension of small weakly inertial particles
- KRM Home
- This Issue
-
Next Article
Numerical study of an anisotropic Vlasov equation arising in plasma physics
Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK |
We study contraction for the kinetic Fokker-Planck operator on the torus. Solving the stochastic differential equation, we show contraction and therefore exponential convergence in the Monge-Kantorovich-Wasserstein $ \mathcal{W}_2$ distance. Finally, we investigate if such a coupling can be obtained by a co-adapted coupling, and show that then the bound must depend on the square root of the initial distance.
References:
[1] |
F. Bolley, I. Gentil and A. Guillin,
Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations, J. Funct. Anal., 263 (2012), 2430-2457.
doi: 10.1016/j.jfa.2012.07.007. |
[2] |
F. Bolley, A. Guillin and F. Malrieu,
Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, M2AN Math. Model. Numer. Anal., 44 (2010), 867-884.
doi: 10.1051/m2an/2010045. |
[3] |
K. Burdzy and W. S. Kendall,
Efficient Markovian couplings: Examples and counterexamples, Ann. Appl. Probab., 10 (2000), 362-409.
doi: 10.1214/aoap/1019487348. |
[4] |
M. Chen, Optimal Markovian couplings and applications, Acta Math. Sinica (N. S.), 10 (1994), 260–275; A Chinese summary appears in Acta Math. Sinica, 38 (1995), p575.
doi: 10.1007/BF02560717. |
[5] |
S. Gadat and L. Miclo,
Spectral decompositions and $ \mathbb{L}^2$-operator norms of toy hypocoercive semi-groups, Kinet. Relat. Models, 6 (2013), 317-372.
doi: 10.3934/krm.2013.6.317. |
[6] |
F. Hérau,
Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., 46 (2006), 349-359.
|
[7] |
F. Hérau and F. Nier,
Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004), 151-218.
doi: 10.1007/s00205-003-0276-3. |
[8] |
R. Jordan, D. Kinderlehrer and F. Otto,
The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[9] |
W. S. Kendall,
Coupling, local times, immersions, Bernoulli, 21 (2015), 1014-1046.
doi: 10.3150/14-BEJ596. |
[10] |
K. Kuwada,
Characterization of maximal Markovian couplings for diffusion processes, Electron. J. Probab., 14 (2009), 633-662.
doi: 10.1214/EJP.v14-634. |
[11] |
S. Mischler and C. Mouhot,
Exponential stability of slowly decaying solutions to the kinetic Fokker-Planck equation, Arch. Ration. Mech. Anal., 221 (2016), 677-723.
doi: 10.1007/s00205-016-0972-4. |
[12] |
P. Mörters and Y. Peres, Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2010, URL http://books.google.co.uk/books?id=e-TbA-dSrzYC.
doi: 10.1017/CBO9780511750489. |
[13] |
C. Mouhot and L. Neumann,
Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.
doi: 10.1088/0951-7715/19/4/011. |
[14] |
D. Talay, Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Related Fields, 8 (2002), 163–198, Inhomogeneous random systems (Cergy-Pontoise, 2001). |
[15] |
C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), ⅳ+141pp.
doi: 10.1090/S0065-9266-09-00567-5. |
[16] |
C. Villani,
Optimal Transport: Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9. |
[17] |
R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, USA, 2001, URL https://books.google.co.uk/books?id=4cI5136OdoMC. |
show all references
References:
[1] |
F. Bolley, I. Gentil and A. Guillin,
Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations, J. Funct. Anal., 263 (2012), 2430-2457.
doi: 10.1016/j.jfa.2012.07.007. |
[2] |
F. Bolley, A. Guillin and F. Malrieu,
Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, M2AN Math. Model. Numer. Anal., 44 (2010), 867-884.
doi: 10.1051/m2an/2010045. |
[3] |
K. Burdzy and W. S. Kendall,
Efficient Markovian couplings: Examples and counterexamples, Ann. Appl. Probab., 10 (2000), 362-409.
doi: 10.1214/aoap/1019487348. |
[4] |
M. Chen, Optimal Markovian couplings and applications, Acta Math. Sinica (N. S.), 10 (1994), 260–275; A Chinese summary appears in Acta Math. Sinica, 38 (1995), p575.
doi: 10.1007/BF02560717. |
[5] |
S. Gadat and L. Miclo,
Spectral decompositions and $ \mathbb{L}^2$-operator norms of toy hypocoercive semi-groups, Kinet. Relat. Models, 6 (2013), 317-372.
doi: 10.3934/krm.2013.6.317. |
[6] |
F. Hérau,
Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., 46 (2006), 349-359.
|
[7] |
F. Hérau and F. Nier,
Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004), 151-218.
doi: 10.1007/s00205-003-0276-3. |
[8] |
R. Jordan, D. Kinderlehrer and F. Otto,
The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[9] |
W. S. Kendall,
Coupling, local times, immersions, Bernoulli, 21 (2015), 1014-1046.
doi: 10.3150/14-BEJ596. |
[10] |
K. Kuwada,
Characterization of maximal Markovian couplings for diffusion processes, Electron. J. Probab., 14 (2009), 633-662.
doi: 10.1214/EJP.v14-634. |
[11] |
S. Mischler and C. Mouhot,
Exponential stability of slowly decaying solutions to the kinetic Fokker-Planck equation, Arch. Ration. Mech. Anal., 221 (2016), 677-723.
doi: 10.1007/s00205-016-0972-4. |
[12] |
P. Mörters and Y. Peres, Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2010, URL http://books.google.co.uk/books?id=e-TbA-dSrzYC.
doi: 10.1017/CBO9780511750489. |
[13] |
C. Mouhot and L. Neumann,
Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.
doi: 10.1088/0951-7715/19/4/011. |
[14] |
D. Talay, Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Related Fields, 8 (2002), 163–198, Inhomogeneous random systems (Cergy-Pontoise, 2001). |
[15] |
C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), ⅳ+141pp.
doi: 10.1090/S0065-9266-09-00567-5. |
[16] |
C. Villani,
Optimal Transport: Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9. |
[17] |
R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, USA, 2001, URL https://books.google.co.uk/books?id=4cI5136OdoMC. |
[1] |
Lingyan Cheng, Ruinan Li, Liming Wu. Exponential convergence in the Wasserstein metric $ W_1 $ for one dimensional diffusions. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5131-5148. doi: 10.3934/dcds.2020222 |
[2] |
Liu Liu, Justyna Jarczyk, Witold Jarczyk, Weinian Zhang. Iterative roots of type $ \mathcal {T}_2 $. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022082 |
[3] |
Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems and Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037 |
[4] |
Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058 |
[5] |
Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116 |
[6] |
Anton Arnold, Beatrice Signorello. Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022009 |
[7] |
Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, 2021, 29 (3) : 2445-2456. doi: 10.3934/era.2020123 |
[8] |
Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109 |
[9] |
Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017 |
[10] |
Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016 |
[11] |
Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485 |
[12] |
José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401 |
[13] |
Debora Amadori, Fatima Al-Zahrà Aqel. On the decay in $ W^{1,\infty} $ for the 1D semilinear damped wave equation on a bounded domain. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5359-5396. doi: 10.3934/dcds.2021080 |
[14] |
Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Adrian Korban, Serap Şahinkaya, Deniz Ustun. Reversible $ G $-codes over the ring $ {\mathcal{F}}_{j,k} $ with applications to DNA codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021056 |
[15] |
Chengxiang Wang, Li Zeng, Wei Yu, Liwei Xu. Existence and convergence analysis of $\ell_{0}$ and $\ell_{2}$ regularizations for limited-angle CT reconstruction. Inverse Problems and Imaging, 2018, 12 (3) : 545-572. doi: 10.3934/ipi.2018024 |
[16] |
Zeinab Karaki. Trend to the equilibrium for the Fokker-Planck system with an external magnetic field. Kinetic and Related Models, 2020, 13 (2) : 309-344. doi: 10.3934/krm.2020011 |
[17] |
Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120 |
[18] |
Benjamin Söllner, Oliver Junge. A convergent Lagrangian discretization for $ p $-Wasserstein and flux-limited diffusion equations. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4227-4256. doi: 10.3934/cpaa.2020190 |
[19] |
Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control and Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001 |
[20] |
Imed Bachar, Habib Mâagli. Singular solutions of a nonlinear equation in a punctured domain of $\mathbb{R}^{2}$. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 171-188. doi: 10.3934/dcdss.2019012 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]