
-
Previous Article
Fractional diffusion limits of non-classical transport equations
- KRM Home
- This Issue
-
Next Article
Modeling of macroscopic stresses in a dilute suspension of small weakly inertial particles
Linear Boltzmann dynamics in a strip with large reflective obstacles: Stationary state and residence time
Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, via A. Scarpa 16, Ⅰ - 00161, Roma, Italy |
The presence of obstacles modifies the way in which particles diffuse. In cells, for instance, it is observed that, due to the presence of macromolecules playing the role of obstacles, the mean-square displacement of biomolecules scales as a power law with exponent smaller than one. On the other hand, different situations in grain and pedestrian dynamics in which the presence of an obstacle accelerates the dynamics are known. We focus on the time, called the residence time, needed by particles to cross a strip assuming that the dynamics inside the strip follows the linear Boltzmann dynamics. We find that the residence time is not monotonic with respect to the size and the location of the obstacles, since the obstacle can force those particles that eventually cross the strip to spend a smaller time in the strip itself. We focus on the case of a rectangular strip with two open sides and two reflective sides and we consider reflective obstacles into the strip. We prove that the stationary state of the linear Boltzmann dynamics, in the diffusive regime, converges to the solution of the Laplace equation with Dirichlet boundary conditions on the open sides and homogeneous Neumann boundary conditions on the other sides and on the obstacle boundaries.
References:
[1] |
G. Albi, M. Bongini, E. Cristiani and D. Kalise,
Invisible control of self-organizing agents leaving unknown environments, SIAM J. Appl. Math., 76 (2016), 1683-1710.
doi: 10.1137/15M1017016. |
[2] |
F. Alonso-Marroquin, S. I. Azeezullah, S. A. Galindo-Torres and L. M. Olsen-Kettle, Bottlenecks in granular flow: When does an obstacle increase the flow rate in an hourglass?, Phys. Rev. E, 85 (2012), 020301.
doi: 10.1103/PhysRevE.85.020301. |
[3] |
G. Basile, A. Nota, F. Pezzotti and M. Pulvirenti,
Derivation of the Fick's law for the Lorentz model in a low density regime, Comm. Math. Phys., 336 (2015), 1607-1636.
doi: 10.1007/s00220-015-2306-z. |
[4] |
N. Bellomo and C. Dogbe,
On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Review, 53 (2011), 409-463.
doi: 10.1137/090746677. |
[5] |
D. Braess, A. Nagurney and T. Wakolbinger,
On a paradox of traffic planning, Transportation Science, 39 (2005), 446-450.
doi: 10.1287/trsc.1050.0127. |
[6] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[7] |
A. Ciallella, On the linear Boltzmann transport equation: A Monte Carlo algorithm for stationary solutions and residence times in presence of obstacles, in AIMETA 2017 - Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, 5 (2017), 952–960. |
[8] |
A. Ciallella, E. N. M. Cirillo and J. Sohier, Residence time of symmetric random walkers in a strip with large reflective obstacles, Phys. Rev. E, 97 (2018), 052116.
doi: 10.1103/PhysRevE.97.052116. |
[9] |
E. N. M. Cirillo and M. Colangeli, Stationary uphill currents in locally perturbed zero-range processes, Phys. Rev. E, 96 (2017), 052137.
doi: 10.1103/PhysRevE.96.052137. |
[10] |
E. N. M. Cirillo, M. Colangeli and A. Muntean,
Does communication enhance pedestrians transport in the dark?, Comptes Rendus Mecanique, 344 (2016), 19-23.
doi: 10.1016/j.crme.2015.09.004. |
[11] |
E. N. M. Cirillo, O. Krehel, A. Muntean and R. van Santen, Lattice model of reduced jamming by a barrier, Phys. Rev. E, 94 (2016), 042115.
doi: 10.1103/PhysRevE.94.042115. |
[12] |
E. N. M. Cirillo, O. Krehel, A. Muntean, R. van Santen and A. Sengar,
Residence time estimates for asymmetric simple exclusion dynamics on strips, Phys. A, 442 (2016), 436-457.
doi: 10.1016/j.physa.2015.09.037. |
[13] |
E. N. M. Cirillo and A. Muntean,
Can cooperation slow down emergency evacuations?, Comptes Rendus Mécanique, 340 (2012), 625-628.
doi: 10.1016/j.crme.2012.09.003. |
[14] |
E. N. M. Cirillo and A. Muntean,
Dynamics of pedestrians in regions with no visibility-a lattice model without exclusion, Phys. A, 392 (2013), 3578-3588.
doi: 10.1016/j.physa.2013.04.029. |
[15] |
E. Cristiani and D. Peri,
Handling obstacles in pedestrian simulations: Models and optimization, Appl. Math. Model., 45 (2017), 285-302.
doi: 10.1016/j.apm.2016.12.020. |
[16] |
A. J. Ellery, M. J. Simpson, S. W. McCue and R. E. Baker, Characterizing transport through a crowded environment with different obstacle sizes, The Journal of Chemical Physics, 140 (2014), 054108.
doi: 10.1063/1.4864000. |
[17] |
R. Escobar and A. De La Rosa, Architectural Design for the Survival Optimization of Panicking Fleeing Victims, in Advances in Artificial Life. ECAL 2003 (eds. W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, and J. T. Kim), 2801 Springer (2003), 97–106.
doi: 10.1007/978-3-540-39432-7_11. |
[18] |
R. Esposito and M. Pulvirenti, From Particles to Fluids, Hand-Book of Mathematical Fluid Dynamics Vol. Ⅲ, North-Holland, Amsterdam, (2004), 1–82. |
[19] |
L. C. Evans, Partial Differential Equations, Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[20] |
B. W. Fitzgerald, J. T. Padding and R. van Santen, Simple diffusion hopping model with convection, Phys. Rev. E, 95 (2017), 013307.
doi: 10.1103/PhysRevE.95.013307. |
[21] |
D. Helbing,
Traffic and related self-driven many-particle systems, Rev. Mod. Phys., 73 (2001), 1067-1141.
doi: 10.1103/RevModPhys.73.1067. |
[22] |
D. Helbing, L. Buzna, A. Johansson and T. Werner,
Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions, Transportation Science, 39 (2005), 1-24.
doi: 10.1287/trsc.1040.0108. |
[23] |
D. Helbing, I. Farkas, P. Molnàr and T. Vicsek, Simulation of pedestrian crowds in normal and evacuation situations, in Pedestrian and Evacuation Dynamics (eds. M. Schreckenberg and S. D. Sharma), Springer, (2002), 21–58. |
[24] |
D. Helbing, I. J. Farkas and T. Vicsek,
Simulating dynamical features of escape panic, Nature, 407 (2000), 487-490.
doi: 10.1038/35035023. |
[25] |
D. Helbing, P. Molnár, I. J. Farkas and K. Bolay,
Self-organizing pedestrian movement, Environment and Planning B: Planning and Design, 28 (2001), 361-383.
doi: 10.1068/b2697. |
[26] |
F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Progr. Phys., 76 (2013), 046602, 50 pp.
doi: 10.1088/0034-4885/76/4/046602. |
[27] |
R. L. Hughes,
The flow of human crowds, Annual Review of Fluid Mechanics, 35 (2003), 169-182.
doi: 10.1146/annurev.fluid.35.101101.161136. |
[28] |
O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-1-4757-4317-3. |
[29] |
M. Matsumoto and T. Nishimura,
Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation, 8 (1998), 3-30.
doi: 10.1145/272991.272995. |
[30] |
M. Matsumoto and T. Nishimura. A Nonempirical Test on the Weight of Pseudorandom Number Generators, in: Monte Carlo and Quasi-Monte Carlo methods 2000 (eds. K. T. Fang, F. J. Hickernel, and H. Niederreiter), Springer-Verlag, (2002), 381–395. |
[31] |
M. A. Mourão, J. B. Hakim and S. Schnell,
Connecting the dots: The effects of macromolecular crowding on cell physiology, Biophysical Journal, 107 (2017), 2761-2766.
doi: 10.1016/j.bpj.2014.10.051. |
[32] |
M. J. Saxton,
Anomalous diffusion due to obstacles: A Monte Carlo study, Biophysical Journal, 66 (1994), 394-401.
doi: 10.1016/S0006-3495(94)80789-1. |
[33] |
K. To, P. Y. Lai and H. K. Pak,
Jamming of granular flow in a two-dimensional hopper, Phys. Rev. Lett., 86 (2001), 71-74.
doi: 10.1103/PhysRevLett.86.71. |
[34] |
I. Zuriguel, A. Garcimartín, D. Maza, L. A. Pugnaloni and J. M. Pastor, Jamming during the discharge of granular matter from a silo, Phys. Rev. E, 71 (2005), 051303.
doi: 10.1103/PhysRevE.71.051303. |
[35] |
I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo and D. Maza, Silo clogging reduction by the presence of an obstacle, Phys. Rev. Lett., 107 (2011), 278001.
doi: 10.1103/PhysRevLett.107.278001. |
show all references
References:
[1] |
G. Albi, M. Bongini, E. Cristiani and D. Kalise,
Invisible control of self-organizing agents leaving unknown environments, SIAM J. Appl. Math., 76 (2016), 1683-1710.
doi: 10.1137/15M1017016. |
[2] |
F. Alonso-Marroquin, S. I. Azeezullah, S. A. Galindo-Torres and L. M. Olsen-Kettle, Bottlenecks in granular flow: When does an obstacle increase the flow rate in an hourglass?, Phys. Rev. E, 85 (2012), 020301.
doi: 10.1103/PhysRevE.85.020301. |
[3] |
G. Basile, A. Nota, F. Pezzotti and M. Pulvirenti,
Derivation of the Fick's law for the Lorentz model in a low density regime, Comm. Math. Phys., 336 (2015), 1607-1636.
doi: 10.1007/s00220-015-2306-z. |
[4] |
N. Bellomo and C. Dogbe,
On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Review, 53 (2011), 409-463.
doi: 10.1137/090746677. |
[5] |
D. Braess, A. Nagurney and T. Wakolbinger,
On a paradox of traffic planning, Transportation Science, 39 (2005), 446-450.
doi: 10.1287/trsc.1050.0127. |
[6] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[7] |
A. Ciallella, On the linear Boltzmann transport equation: A Monte Carlo algorithm for stationary solutions and residence times in presence of obstacles, in AIMETA 2017 - Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, 5 (2017), 952–960. |
[8] |
A. Ciallella, E. N. M. Cirillo and J. Sohier, Residence time of symmetric random walkers in a strip with large reflective obstacles, Phys. Rev. E, 97 (2018), 052116.
doi: 10.1103/PhysRevE.97.052116. |
[9] |
E. N. M. Cirillo and M. Colangeli, Stationary uphill currents in locally perturbed zero-range processes, Phys. Rev. E, 96 (2017), 052137.
doi: 10.1103/PhysRevE.96.052137. |
[10] |
E. N. M. Cirillo, M. Colangeli and A. Muntean,
Does communication enhance pedestrians transport in the dark?, Comptes Rendus Mecanique, 344 (2016), 19-23.
doi: 10.1016/j.crme.2015.09.004. |
[11] |
E. N. M. Cirillo, O. Krehel, A. Muntean and R. van Santen, Lattice model of reduced jamming by a barrier, Phys. Rev. E, 94 (2016), 042115.
doi: 10.1103/PhysRevE.94.042115. |
[12] |
E. N. M. Cirillo, O. Krehel, A. Muntean, R. van Santen and A. Sengar,
Residence time estimates for asymmetric simple exclusion dynamics on strips, Phys. A, 442 (2016), 436-457.
doi: 10.1016/j.physa.2015.09.037. |
[13] |
E. N. M. Cirillo and A. Muntean,
Can cooperation slow down emergency evacuations?, Comptes Rendus Mécanique, 340 (2012), 625-628.
doi: 10.1016/j.crme.2012.09.003. |
[14] |
E. N. M. Cirillo and A. Muntean,
Dynamics of pedestrians in regions with no visibility-a lattice model without exclusion, Phys. A, 392 (2013), 3578-3588.
doi: 10.1016/j.physa.2013.04.029. |
[15] |
E. Cristiani and D. Peri,
Handling obstacles in pedestrian simulations: Models and optimization, Appl. Math. Model., 45 (2017), 285-302.
doi: 10.1016/j.apm.2016.12.020. |
[16] |
A. J. Ellery, M. J. Simpson, S. W. McCue and R. E. Baker, Characterizing transport through a crowded environment with different obstacle sizes, The Journal of Chemical Physics, 140 (2014), 054108.
doi: 10.1063/1.4864000. |
[17] |
R. Escobar and A. De La Rosa, Architectural Design for the Survival Optimization of Panicking Fleeing Victims, in Advances in Artificial Life. ECAL 2003 (eds. W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, and J. T. Kim), 2801 Springer (2003), 97–106.
doi: 10.1007/978-3-540-39432-7_11. |
[18] |
R. Esposito and M. Pulvirenti, From Particles to Fluids, Hand-Book of Mathematical Fluid Dynamics Vol. Ⅲ, North-Holland, Amsterdam, (2004), 1–82. |
[19] |
L. C. Evans, Partial Differential Equations, Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[20] |
B. W. Fitzgerald, J. T. Padding and R. van Santen, Simple diffusion hopping model with convection, Phys. Rev. E, 95 (2017), 013307.
doi: 10.1103/PhysRevE.95.013307. |
[21] |
D. Helbing,
Traffic and related self-driven many-particle systems, Rev. Mod. Phys., 73 (2001), 1067-1141.
doi: 10.1103/RevModPhys.73.1067. |
[22] |
D. Helbing, L. Buzna, A. Johansson and T. Werner,
Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions, Transportation Science, 39 (2005), 1-24.
doi: 10.1287/trsc.1040.0108. |
[23] |
D. Helbing, I. Farkas, P. Molnàr and T. Vicsek, Simulation of pedestrian crowds in normal and evacuation situations, in Pedestrian and Evacuation Dynamics (eds. M. Schreckenberg and S. D. Sharma), Springer, (2002), 21–58. |
[24] |
D. Helbing, I. J. Farkas and T. Vicsek,
Simulating dynamical features of escape panic, Nature, 407 (2000), 487-490.
doi: 10.1038/35035023. |
[25] |
D. Helbing, P. Molnár, I. J. Farkas and K. Bolay,
Self-organizing pedestrian movement, Environment and Planning B: Planning and Design, 28 (2001), 361-383.
doi: 10.1068/b2697. |
[26] |
F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Progr. Phys., 76 (2013), 046602, 50 pp.
doi: 10.1088/0034-4885/76/4/046602. |
[27] |
R. L. Hughes,
The flow of human crowds, Annual Review of Fluid Mechanics, 35 (2003), 169-182.
doi: 10.1146/annurev.fluid.35.101101.161136. |
[28] |
O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-1-4757-4317-3. |
[29] |
M. Matsumoto and T. Nishimura,
Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation, 8 (1998), 3-30.
doi: 10.1145/272991.272995. |
[30] |
M. Matsumoto and T. Nishimura. A Nonempirical Test on the Weight of Pseudorandom Number Generators, in: Monte Carlo and Quasi-Monte Carlo methods 2000 (eds. K. T. Fang, F. J. Hickernel, and H. Niederreiter), Springer-Verlag, (2002), 381–395. |
[31] |
M. A. Mourão, J. B. Hakim and S. Schnell,
Connecting the dots: The effects of macromolecular crowding on cell physiology, Biophysical Journal, 107 (2017), 2761-2766.
doi: 10.1016/j.bpj.2014.10.051. |
[32] |
M. J. Saxton,
Anomalous diffusion due to obstacles: A Monte Carlo study, Biophysical Journal, 66 (1994), 394-401.
doi: 10.1016/S0006-3495(94)80789-1. |
[33] |
K. To, P. Y. Lai and H. K. Pak,
Jamming of granular flow in a two-dimensional hopper, Phys. Rev. Lett., 86 (2001), 71-74.
doi: 10.1103/PhysRevLett.86.71. |
[34] |
I. Zuriguel, A. Garcimartín, D. Maza, L. A. Pugnaloni and J. M. Pastor, Jamming during the discharge of granular matter from a silo, Phys. Rev. E, 71 (2005), 051303.
doi: 10.1103/PhysRevE.71.051303. |
[35] |
I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo and D. Maza, Silo clogging reduction by the presence of an obstacle, Phys. Rev. Lett., 107 (2011), 278001.
doi: 10.1103/PhysRevLett.107.278001. |














[1] |
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 |
[2] |
Zhiyan Ding, Qin Li. Constrained Ensemble Langevin Monte Carlo. Foundations of Data Science, 2022, 4 (1) : 37-70. doi: 10.3934/fods.2021034 |
[3] |
Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic and Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049 |
[4] |
Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems and Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81 |
[5] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[6] |
Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201-224. doi: 10.3934/fods.2021014 |
[7] |
Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic and Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039 |
[8] |
Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335 |
[9] |
Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683 |
[10] |
Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313 |
[11] |
Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125 |
[12] |
Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803 |
[13] |
Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025 |
[14] |
Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic and Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021 |
[15] |
Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic and Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79 |
[16] |
Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic and Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345 |
[17] |
Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 |
[18] |
Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042 |
[19] |
Luisa Arlotti, Bertrand Lods, Mustapha Mokhtar-Kharroubi. Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations. Communications on Pure and Applied Analysis, 2014, 13 (2) : 729-771. doi: 10.3934/cpaa.2014.13.729 |
[20] |
Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]