We establish asymptotic diffusion limits of the non-classical transport equation derived in [
Citation: |
[1] |
N. B. Abdallah, A. Mellet and M. Puel, Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach, Kinet. Relat. Models, 4 (2011), 873-900.
doi: 10.3934/krm.2011.4.873.![]() ![]() ![]() |
[2] |
E. Albano and H. Martin, Temperature-programmed reactions with anomalous diffusion, J. Phys. Chem., 92 (1988), 3594-3597.
doi: 10.1021/j100323a054.![]() ![]() |
[3] |
C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of the critical size, Trans. Amer. Math. Soc., 284 (1984), 617-649.
doi: 10.1090/S0002-9947-1984-0743736-0.![]() ![]() ![]() |
[4] |
T. Camminady, M. Frank and E. Larsen, Nonclassical particle transport in heterogeneous materials, M & C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Korean Nuclear Society, 2017, On USB.
![]() |
[5] |
B. Carreras, V. Lynch and G. Zaslavsky, Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model, Phys. Plasmas, 8 (2001), 5096.
doi: 10.1063/1.1416180.![]() ![]() |
[6] |
L. Cesbron, A. Mellet and K. Trivisa, Anomalous diffusion in plasma physics, Appl. Math. Lett., 25.
![]() |
[7] |
N. Crouseilles, H. Hivert and M. Lemou, Multiscale numerical schemes for kinetic equations in the anomalous diffusion limit, Comptes Rendus Mathematique, 353 (2015), 755-760.
doi: 10.1016/j.crma.2015.05.003.![]() ![]() ![]() |
[8] |
A. Davis and A. Marshak, Solar radiation transport in the cloudy atmosphere: A 3D perspective on observations and climate impacts, Rep. Prog. Phys., 73 (2010), 026801.
doi: 10.1088/0034-4885/73/2/026801.![]() ![]() |
[9] |
E. d'Eon, Rigorous asymptotic and moment-preserving diffusion approximations for generalized linear boltzmann transport in arbitrary dimension, Transp. Theory Stat. Phys., 42 (2013), 237-297.
doi: 10.1080/00411450.2014.910231.![]() ![]() ![]() |
[10] |
M. Frank and T. Goudon, On a generalized Boltzmann equation for non-classical particle transport, Kinet. Relat. Models, 3 (2010), 395-407.
doi: 10.3934/krm.2010.3.395.![]() ![]() ![]() |
[11] |
F. Golse, Recent results on the periodic Lorentz gas, in Nonlinear Partial Differential Equations, 39–99, Adv. Courses Math. CRM Barcelona, Birkh'auser/Springer Basel AG, Basel, 2012.
doi: 10.1007/978-3-0348-0191-1_2.![]() ![]() ![]() |
[12] |
E. Larsen, A generalized Boltzmann equation for non-classical particle transport, Journal of Quantitative Spectroscopy and Radiative Transfer, 112 (2011), 619-631.
doi: 10.1016/j.jqsrt.2010.07.003.![]() ![]() |
[13] |
E. Larsen and R. Vasques, A generalized linear boltzmann equation for non-classical particle transport, J. Quant. Spectrosc. Radiat. Transfer, 112 (2011), 619-631.
doi: 10.1016/j.jqsrt.2010.07.003.![]() ![]() |
[14] |
J. Marklof and A. Strömbergsson, The Boltzmann-Grad limit of the periodic Lorentz gas, Ann. of Math., 174 (2011), 225-298.
doi: 10.4007/annals.2011.174.1.7.![]() ![]() ![]() |
[15] |
J. Marklof and B. Toth, Superdiffusion in the periodic Lorentz gas, Commun. Math. Phys., 347 (2016), 933-981.
doi: 10.1007/s00220-016-2578-y.![]() ![]() ![]() |
[16] |
A. Mellet, Fractional diffusion limit for collisional kinetic equations: A moments method, Indiana Univ. Math. J., 59 (2010), 1333-1360.
doi: 10.1512/iumj.2010.59.4128.![]() ![]() ![]() |
[17] |
A. Mellet and S. Merino-Aceituno, Anomalous energy transport in FPU-beta chain, J. Stat. Phys., 160 (2015), 583-621.
doi: 10.1007/s10955-015-1273-2.![]() ![]() ![]() |
[18] |
A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.
doi: 10.1007/s00205-010-0354-2.![]() ![]() ![]() |
[19] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Reports, 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3.![]() ![]() ![]() |
[20] |
K. Pfeilsticker, First geometrical path lengths probability density function derivation of the skylight from spectroscopically highly resolving oxygen A-band observations. 2. derivation of the levy-index for the skylight transmitted by mid-latitude clouds, J. Geophys. Res., 104 (1999), 4104-4116.
![]() |
[21] |
Y. Sagi, M. Brook, I. Almog and N. Davidson, Observation of anomalous diffusion and fractional self-similarity in one dimension, Phys. Rev. Lett., 108 (2012), 093002.
doi: 10.1103/PhysRevLett.108.093002.![]() ![]() |
[22] |
E. Schumacher, E. Hanert and E. Deleersnijder, Front dynamics in fractional-order epidemic models, J. Theo. Biol., 279 (2011), 9-16.
doi: 10.1016/j.jtbi.2011.03.012.![]() ![]() ![]() |
[23] |
R. Vasques and E. Larsen, Anisotropic diffusion in model 2-d pebble-bed reactor cores, in Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications, American Nuclear Society, 2009, On CD-ROM.
![]() |
[24] |
G. Viswanathan, V. Afanasyev, S. Buldyrev, E. Murphy, P. Prince and H. Stanley, Levy flight search patterns of wandering albatrosses, Nature, 381 (1996), 413-415.
doi: 10.1038/381413a0.![]() ![]() |
[25] |
K. Vynck, M. Burresi, F. Riboli and D. Wiersma, Photon management in two-dimensional disordered media, Nature Materials, 11 (2012), 1017-1022.
doi: 10.1038/nmat3442.![]() ![]() |
[26] |
L. Wang and B. Yan, An asymptotic-preserving scheme for linear kinetic equation with fractional diffusion limit, J. Comput. Phys., 312 (2016), 157-174.
doi: 10.1016/j.jcp.2016.02.034.![]() ![]() ![]() |