
-
Previous Article
Numerical solutions for multidimensional fragmentation problems using finite volume methods
- KRM Home
- This Issue
-
Next Article
Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density
A stochastic algorithm without time discretization error for the Wigner equation
1. | Dipartimento di Matematica e Informatica, Università degli studi di Catania, viale A. Doria 6, 95125 Catania, Italy |
2. | Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39 - 10117 Berlin, Germany |
Stochastic particle methods for the numerical treatment of the Wigner equation are considered. The approximation properties of these methods depend on several numerical parameters. Such parameters are the number of particles, a time step (if transport and other processes are treated separately) and the grid size (used for the discretization of the position and the wave-vector). A stochastic algorithm without time discretization error is introduced. Its derivation is based on the theory of piecewise deterministic Markov processes. Numerical experiments are performed in a one-dimensional test case. Approximation properties with respect to the grid size and the number of particles are studied. Convergence of a time-splitting scheme to the no-splitting algorithm is demonstrated. The no-splitting algorithm is shown to be more efficient in terms of computational effort.
References:
[1] |
A. Arnold, I. Gamba, M. Gualdani, S. Mischler, C. Mouhot and C. Sparber,
The WignerFokker-Planck equation: Stationary states and large time behavior, Math. Models Methods Appl. Sci., 22 (2012), 1250034, 31pp.
doi: 10.1142/S0218202512500340. |
[2] |
P. Ellinghaus, J. Weinbub, M. Nedjalkov, S. Selberherr and I. Dimov,
Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition, J. Comput. Electronics, 14 (2015), 151-162.
doi: 10.1007/s10825-014-0635-3. |
[3] |
I. Gamba, M. Gualdani and R. Sharp,
An adaptable discontinuous Galerkin scheme for the Wigner-Fokker-Planck equation, Comm. Math. Sci., 7 (2009), 635-664.
doi: 10.4310/CMS.2009.v7.n3.a7. |
[4] |
I. Gamba, S. Rjasanow and W. Wagner,
Direct simulation of the uniformly heated granular Boltzmann equation, Math. Comput. Modelling, 42 (2005), 683-700.
doi: 10.1016/j.mcm.2004.02.047. |
[5] |
C. Jacoboni and P. Bordone,
The Wigner-function approach to non-equilibrium electron transport, Rep. Prog. Phys., 67 (2004), 1033-1071.
doi: 10.1088/0034-4885/67/7/R01. |
[6] |
C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device simulation, Springer, 1989.
doi: 10.1007/978-3-7091-6963-6. |
[7] |
O. Muscato,
A benchmark study of the Signed-particle Monte Carlo algorithm for the Wigner equation, Comm. Applied Industr. Mathematics, 8 (2017), 237-250.
doi: 10.1515/caim-2017-0012. |
[8] |
O. Muscato, V. Di Stefano and W. Wagner,
A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation, Comput. Math. Appl., 65 (2013), 520-527.
doi: 10.1016/j.camwa.2012.03.100. |
[9] |
O. Muscato and W. Wagner,
Time step truncation in direct simulation Monte Carlo for semiconductors, COMPEL, 24 (2005), 1351-1366.
doi: 10.1108/03321640510615652. |
[10] |
O. Muscato and W. Wagner,
A class of stochastic algorithms for the Wigner equation, SIAM J. Sci. Comput., 38 (2016), A1483-A1507.
doi: 10.1137/16M105798X. |
[11] |
O. Muscato, W. Wagner and V. Di Stefano,
Numerical study of the systematic error in Monte Carlo schemes for semiconductors, ESAIM: M2AN, 44 (2010), 1049-1068.
doi: 10.1051/m2an/2010051. |
[12] |
M. Nedjalkov, H. Kosina, S. Selberherr, C. Ringhofer and D. Ferry,
Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices, Phys. Rev. B, 70 (2004), 115319.
doi: 10.1103/PhysRevB.70.115319. |
[13] |
M. Nedjalkov, D. Querlioz, P. Dollfus and H. Kosina, Wigner function approach, in Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, D. Vasileska and S. M. Goodnick, eds., Springer New York, 2011,289-358.
doi: 10.1007/978-1-4419-8840-9_5. |
[14] |
D. Querlioz and P. Dollfus, The Wigner Monte Carlo Method for Nanoelectronic Devices, Wiley, 2010. |
[15] |
S. Rjasanow and W. Wagner,
Time splitting error in DSMC schemes for the spatially homogeneous inelastic Boltzmann equation, SIAM J. Num. Anal., 45 (2007), 54-67.
doi: 10.1137/050643842. |
[16] |
S. Shao and J. Sellier,
Comparison of deterministic and stochastic methods for time-dependent Wigner simulations, J. Comput. Phys., 300 (2015), 167-185.
doi: 10.1016/j.jcp.2015.08.002. |
[17] |
W. Wagner,
A random cloud model for the Wigner equation, Kin. Related Models, 9 (2016), 217-235.
doi: 10.3934/krm.2016.9.217. |
[18] |
E. Wigner,
On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759.
doi: 10.1007/978-3-642-59033-7_9. |
show all references
References:
[1] |
A. Arnold, I. Gamba, M. Gualdani, S. Mischler, C. Mouhot and C. Sparber,
The WignerFokker-Planck equation: Stationary states and large time behavior, Math. Models Methods Appl. Sci., 22 (2012), 1250034, 31pp.
doi: 10.1142/S0218202512500340. |
[2] |
P. Ellinghaus, J. Weinbub, M. Nedjalkov, S. Selberherr and I. Dimov,
Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition, J. Comput. Electronics, 14 (2015), 151-162.
doi: 10.1007/s10825-014-0635-3. |
[3] |
I. Gamba, M. Gualdani and R. Sharp,
An adaptable discontinuous Galerkin scheme for the Wigner-Fokker-Planck equation, Comm. Math. Sci., 7 (2009), 635-664.
doi: 10.4310/CMS.2009.v7.n3.a7. |
[4] |
I. Gamba, S. Rjasanow and W. Wagner,
Direct simulation of the uniformly heated granular Boltzmann equation, Math. Comput. Modelling, 42 (2005), 683-700.
doi: 10.1016/j.mcm.2004.02.047. |
[5] |
C. Jacoboni and P. Bordone,
The Wigner-function approach to non-equilibrium electron transport, Rep. Prog. Phys., 67 (2004), 1033-1071.
doi: 10.1088/0034-4885/67/7/R01. |
[6] |
C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device simulation, Springer, 1989.
doi: 10.1007/978-3-7091-6963-6. |
[7] |
O. Muscato,
A benchmark study of the Signed-particle Monte Carlo algorithm for the Wigner equation, Comm. Applied Industr. Mathematics, 8 (2017), 237-250.
doi: 10.1515/caim-2017-0012. |
[8] |
O. Muscato, V. Di Stefano and W. Wagner,
A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation, Comput. Math. Appl., 65 (2013), 520-527.
doi: 10.1016/j.camwa.2012.03.100. |
[9] |
O. Muscato and W. Wagner,
Time step truncation in direct simulation Monte Carlo for semiconductors, COMPEL, 24 (2005), 1351-1366.
doi: 10.1108/03321640510615652. |
[10] |
O. Muscato and W. Wagner,
A class of stochastic algorithms for the Wigner equation, SIAM J. Sci. Comput., 38 (2016), A1483-A1507.
doi: 10.1137/16M105798X. |
[11] |
O. Muscato, W. Wagner and V. Di Stefano,
Numerical study of the systematic error in Monte Carlo schemes for semiconductors, ESAIM: M2AN, 44 (2010), 1049-1068.
doi: 10.1051/m2an/2010051. |
[12] |
M. Nedjalkov, H. Kosina, S. Selberherr, C. Ringhofer and D. Ferry,
Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices, Phys. Rev. B, 70 (2004), 115319.
doi: 10.1103/PhysRevB.70.115319. |
[13] |
M. Nedjalkov, D. Querlioz, P. Dollfus and H. Kosina, Wigner function approach, in Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, D. Vasileska and S. M. Goodnick, eds., Springer New York, 2011,289-358.
doi: 10.1007/978-1-4419-8840-9_5. |
[14] |
D. Querlioz and P. Dollfus, The Wigner Monte Carlo Method for Nanoelectronic Devices, Wiley, 2010. |
[15] |
S. Rjasanow and W. Wagner,
Time splitting error in DSMC schemes for the spatially homogeneous inelastic Boltzmann equation, SIAM J. Num. Anal., 45 (2007), 54-67.
doi: 10.1137/050643842. |
[16] |
S. Shao and J. Sellier,
Comparison of deterministic and stochastic methods for time-dependent Wigner simulations, J. Comput. Phys., 300 (2015), 167-185.
doi: 10.1016/j.jcp.2015.08.002. |
[17] |
W. Wagner,
A random cloud model for the Wigner equation, Kin. Related Models, 9 (2016), 217-235.
doi: 10.3934/krm.2016.9.217. |
[18] |
E. Wigner,
On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759.
doi: 10.1007/978-3-642-59033-7_9. |










|
calls | CPU (sec) | ||||
400 | 400 | 160k | 480k | 20 | 358k | 256 |
100 | 400 | 160k | 480k | 14 | 273k | 218 |
400 | 100 | 160k | 480k | 15 | 301k | 229 |
400 | 400 | 40k | 480k | 7 | 174k | 151 |
400 | 400 | 160k | 960k | 9 | 402k | 345 |
|
calls | CPU (sec) | ||||
400 | 400 | 160k | 480k | 20 | 358k | 256 |
100 | 400 | 160k | 480k | 14 | 273k | 218 |
400 | 100 | 160k | 480k | 15 | 301k | 229 |
400 | 400 | 40k | 480k | 7 | 174k | 151 |
400 | 400 | 160k | 960k | 9 | 402k | 345 |
CPU (sec.) | err-max | err-aver | canc. times | |
1 | 278 | 0.0106 | 0.0024 | 3.0000, 6.0000, 8.0000 |
0.4 | 395 | 0.0053 | 0.0009 | 2.4000, 4.4000, 6.4000 |
0.1 | 928 | 0.0019 | 0.0004 | 2.0000, 3.8000, 5.4870 |
0.05 | 1628 | 0.0018 | 0.0003 | 1.9500, 3.6700, 5.2730 |
0.025 | 3028 | 0.0017 | 0.0003 | 1.9222, 3.6222, 5.2182 |
no-splitting | 256 | 0.0013 | 0.0002 | 1.8927, 3.5716, 5.1428 |
CPU (sec.) | err-max | err-aver | canc. times | |
1 | 278 | 0.0106 | 0.0024 | 3.0000, 6.0000, 8.0000 |
0.4 | 395 | 0.0053 | 0.0009 | 2.4000, 4.4000, 6.4000 |
0.1 | 928 | 0.0019 | 0.0004 | 2.0000, 3.8000, 5.4870 |
0.05 | 1628 | 0.0018 | 0.0003 | 1.9500, 3.6700, 5.2730 |
0.025 | 3028 | 0.0017 | 0.0003 | 1.9222, 3.6222, 5.2182 |
no-splitting | 256 | 0.0013 | 0.0002 | 1.8927, 3.5716, 5.1428 |
[1] |
Zhiyan Ding, Qin Li. Constrained Ensemble Langevin Monte Carlo. Foundations of Data Science, 2022, 4 (1) : 37-70. doi: 10.3934/fods.2021034 |
[2] |
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 |
[3] |
Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems and Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81 |
[4] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[5] |
Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201-224. doi: 10.3934/fods.2021014 |
[6] |
Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335 |
[7] |
Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683 |
[8] |
Orazio Muscato, Wolfgang Wagner, Vincenza Di Stefano. Properties of the steady state distribution of electrons in semiconductors. Kinetic and Related Models, 2011, 4 (3) : 809-829. doi: 10.3934/krm.2011.4.809 |
[9] |
Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313 |
[10] |
Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125 |
[11] |
Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803 |
[12] |
Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025 |
[13] |
Albert Fannjiang, Knut Solna. Time reversal of parabolic waves and two-frequency Wigner distribution. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 783-802. doi: 10.3934/dcdsb.2006.6.783 |
[14] |
Wolfgang Wagner. A random cloud model for the Wigner equation. Kinetic and Related Models, 2016, 9 (1) : 217-235. doi: 10.3934/krm.2016.9.217 |
[15] |
Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic and Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955 |
[16] |
Rémi Carles, Clotilde Fermanian-Kammerer, Norbert J. Mauser, Hans Peter Stimming. On the time evolution of Wigner measures for Schrödinger equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 559-585. doi: 10.3934/cpaa.2009.8.559 |
[17] |
Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204 |
[18] |
Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems and Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051 |
[19] |
Kevin Ford. The distribution of totients. Electronic Research Announcements, 1998, 4: 27-34. |
[20] |
Li Chen, Xiu-Qing Chen, Ansgar Jüngel. Semiclassical limit in a simplified quantum energy-transport model for semiconductors. Kinetic and Related Models, 2011, 4 (4) : 1049-1062. doi: 10.3934/krm.2011.4.1049 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]