
-
Previous Article
An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions
- KRM Home
- This Issue
-
Next Article
Elastic limit and vanishing external force for granular systems
Kinetic models and intrinsic timescales: Simulation comparison for a 2nd order queueing model
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287-1804, USA |
Kinetic models of stochastic production flows can be expanded into deterministic moment equations and thus approximated with appropriate closures. A second order model for the product density and the product speed has previously been proposed. A systematic analysis comparing simulations of the partial differential equations (PDE) with discrete event simulations (DES) is performed. Specifically, factory production is modeled as an M/M/1 queue where the arrival process is a non-homogeneous Poisson process. Three fundamental scenarios for such a time dependent influx are studied: An instant step up/step down of the arrival rate, an exponential step up/step down and periodic variation of the average arrival rate. It is shown that the second order model in general yields significant improvements over the first order model. Adding diffusion into the PDE further improves the agreement in particular for queues with low utilization. The analysis also points to fundamental open issues regarding kinetic models of time dependent agent based simulations. Memory effects and the possibility of resonance in deterministic models are caused by intrinsic timescales of the PDE that are not present in the original stochastic processes.
References:
[1] |
D. Armbruster, J. Fonteijn and M. Wienke, Modeling production planning and transient clearing functions, in Robust Manufacturing Control, Springer, 2012, 77–88
doi: 10.1007/978-3-642-30749-2_6. |
[2] |
D. Armbruster, D. Marthaler and C. Ringhofer,
Kinetic and fluid model hierarchies for supply chains, Multiscale Modeling & Simulation, 2 (2003), 43-61.
doi: 10.1137/S1540345902419616. |
[3] |
D. Armbruster, D. E. Marthaler, C. Ringhofer, K. Kempf and T.-C. Jo,
A continuum model for a re-entrant factory, Operations Research, 54 (2006), 933-950.
doi: 10.1287/opre.1060.0321. |
[4] |
A. Aw and M. Rascle,
Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938.
doi: 10.1137/S0036139997332099. |
[5] |
M. Bramson, Stability of Queueing Networks, Springer-Verlag, New York, 2008. |
[6] |
G. Bretti, C. D'Apice, R. Manzo and B. Piccoli,
A continuum-discrete model for supply chains dynamics, Networks and Heterogeneous Media, 2 (2007), 661-694.
doi: 10.3934/nhm.2007.2.661. |
[7] |
C. Cercignani, The Boltzmann Equation, Springer-Verlag, 1988. |
[8] |
J.-M. Coron and Z. Wang,
Controllability for a scalar conservation law with nonlocal velocity, Journal of Differential Equations, 252 (2012), 181-201.
doi: 10.1016/j.jde.2011.08.042. |
[9] |
J.-M. Coron, M. Kawski and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system, AIMS, 14 (2014), 1337–1359, arXiv: 0907.1274.
doi: 10.3934/dcdsb.2010.14.1337. |
[10] |
C. F. Daganzo,
Requiem for second-order fluid approximations of traffic flow, Transportation Research Part B: Methodological, 29 (1995), 277-286.
doi: 10.1016/0191-2615(95)00007-Z. |
[11] |
J. Dai,
On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models, The Annals of Applied Probability, 5 (1995), 49-77.
doi: 10.1214/aoap/1177004828. |
[12] |
J. Dai, J. Hasenbein and J. V. Vate,
Stability and instability of a two-station queueing network, Annals of Applied Probability, 14 (2004), 326-377.
doi: 10.1214/aoap/1075828055. |
[13] |
C. D'Apice, R. Manzo and B. Piccoli,
Modelling supply networks with partial differential equations, Quarterly of Applied Mathematics, 67 (2009), 419-440.
doi: 10.1090/S0033-569X-09-01129-1. |
[14] |
L. Forestier-Coste, S. Göttlich and M. Herty,
Data-fitted second-order macroscopic production models, SIAM Journal on Applied Mathematics, 75 (2015), 999-1014.
doi: 10.1137/140989832. |
[15] |
S. Göttlich, M. Herty and A. Klar,
Network models for supply chains, Communications in Mathematical Sciences, 3 (2005), 545-559.
doi: 10.4310/CMS.2005.v3.n4.a5. |
[16] |
A. Hofkamp, J. Rooda, R. Schiffelers and D. van Beek, Chi 2.0 Reference Manual, Technical report, Technical Report SE-Report 2008-02, Eindhoven University of Technology, Department of Mechanical Engineering, The Netherlands, 2008. http://se.wtb.tue.nl/sereports, 2007. |
[17] |
A. Keimer and L. Pflug,
Existence, uniqueness and regularity results on nonlocal balance laws, Journal of Differential Equations, 263 (2017), 4023-4069.
doi: 10.1016/j.jde.2017.05.015. |
[18] |
R. J. LeVeque, Numerical Methods for Conservation Laws, Second Edition, Birkhauser Verlag, Basel, Switzerland, 1992.
doi: 10.1007/978-3-0348-8629-1. |
[19] |
P. A. Lewis and G. S. Shedler,
Simulation of Nonhomogeneous Poisson Processes by Thinning, Technical report, DTIC Document, 1978. |
[20] |
T. Li, M. Tang and X. Yang,
An augmented keller-segal model for e. coli chemotaxis in fast-varying environments, Communication in Mathematical Sciences, 14 (2016), 883-891.
doi: 10.4310/CMS.2016.v14.n3.a12. |
[21] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. ⅱ. a theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[22] |
J. D. C. Little,
A proof of the queuing formula: L = $λ$w, Operations Research, 9 (1961), 383-387.
doi: 10.1287/opre.9.3.383. |
[23] |
P. I. Richards,
Shock waves on the highway, Operations Research, 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[24] |
S. M. Ross,
Simulation, Fifth Edition, Academic Press, Oxford, 2013.
doi: 10.1016/B978-0-12-415825-2.00001-2. |
[25] |
P. Shang and Z. Wang,
Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system, Journal of Differential Equations, 250 (2011), 949-982.
doi: 10.1016/j.jde.2010.09.003. |
[26] |
M. Sun,
Singular solutions to the Riemann problem for a macroscopic production model, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 97 (2017), 916-931.
doi: 10.1002/zamm.201600171. |
show all references
References:
[1] |
D. Armbruster, J. Fonteijn and M. Wienke, Modeling production planning and transient clearing functions, in Robust Manufacturing Control, Springer, 2012, 77–88
doi: 10.1007/978-3-642-30749-2_6. |
[2] |
D. Armbruster, D. Marthaler and C. Ringhofer,
Kinetic and fluid model hierarchies for supply chains, Multiscale Modeling & Simulation, 2 (2003), 43-61.
doi: 10.1137/S1540345902419616. |
[3] |
D. Armbruster, D. E. Marthaler, C. Ringhofer, K. Kempf and T.-C. Jo,
A continuum model for a re-entrant factory, Operations Research, 54 (2006), 933-950.
doi: 10.1287/opre.1060.0321. |
[4] |
A. Aw and M. Rascle,
Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938.
doi: 10.1137/S0036139997332099. |
[5] |
M. Bramson, Stability of Queueing Networks, Springer-Verlag, New York, 2008. |
[6] |
G. Bretti, C. D'Apice, R. Manzo and B. Piccoli,
A continuum-discrete model for supply chains dynamics, Networks and Heterogeneous Media, 2 (2007), 661-694.
doi: 10.3934/nhm.2007.2.661. |
[7] |
C. Cercignani, The Boltzmann Equation, Springer-Verlag, 1988. |
[8] |
J.-M. Coron and Z. Wang,
Controllability for a scalar conservation law with nonlocal velocity, Journal of Differential Equations, 252 (2012), 181-201.
doi: 10.1016/j.jde.2011.08.042. |
[9] |
J.-M. Coron, M. Kawski and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system, AIMS, 14 (2014), 1337–1359, arXiv: 0907.1274.
doi: 10.3934/dcdsb.2010.14.1337. |
[10] |
C. F. Daganzo,
Requiem for second-order fluid approximations of traffic flow, Transportation Research Part B: Methodological, 29 (1995), 277-286.
doi: 10.1016/0191-2615(95)00007-Z. |
[11] |
J. Dai,
On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models, The Annals of Applied Probability, 5 (1995), 49-77.
doi: 10.1214/aoap/1177004828. |
[12] |
J. Dai, J. Hasenbein and J. V. Vate,
Stability and instability of a two-station queueing network, Annals of Applied Probability, 14 (2004), 326-377.
doi: 10.1214/aoap/1075828055. |
[13] |
C. D'Apice, R. Manzo and B. Piccoli,
Modelling supply networks with partial differential equations, Quarterly of Applied Mathematics, 67 (2009), 419-440.
doi: 10.1090/S0033-569X-09-01129-1. |
[14] |
L. Forestier-Coste, S. Göttlich and M. Herty,
Data-fitted second-order macroscopic production models, SIAM Journal on Applied Mathematics, 75 (2015), 999-1014.
doi: 10.1137/140989832. |
[15] |
S. Göttlich, M. Herty and A. Klar,
Network models for supply chains, Communications in Mathematical Sciences, 3 (2005), 545-559.
doi: 10.4310/CMS.2005.v3.n4.a5. |
[16] |
A. Hofkamp, J. Rooda, R. Schiffelers and D. van Beek, Chi 2.0 Reference Manual, Technical report, Technical Report SE-Report 2008-02, Eindhoven University of Technology, Department of Mechanical Engineering, The Netherlands, 2008. http://se.wtb.tue.nl/sereports, 2007. |
[17] |
A. Keimer and L. Pflug,
Existence, uniqueness and regularity results on nonlocal balance laws, Journal of Differential Equations, 263 (2017), 4023-4069.
doi: 10.1016/j.jde.2017.05.015. |
[18] |
R. J. LeVeque, Numerical Methods for Conservation Laws, Second Edition, Birkhauser Verlag, Basel, Switzerland, 1992.
doi: 10.1007/978-3-0348-8629-1. |
[19] |
P. A. Lewis and G. S. Shedler,
Simulation of Nonhomogeneous Poisson Processes by Thinning, Technical report, DTIC Document, 1978. |
[20] |
T. Li, M. Tang and X. Yang,
An augmented keller-segal model for e. coli chemotaxis in fast-varying environments, Communication in Mathematical Sciences, 14 (2016), 883-891.
doi: 10.4310/CMS.2016.v14.n3.a12. |
[21] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. ⅱ. a theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[22] |
J. D. C. Little,
A proof of the queuing formula: L = $λ$w, Operations Research, 9 (1961), 383-387.
doi: 10.1287/opre.9.3.383. |
[23] |
P. I. Richards,
Shock waves on the highway, Operations Research, 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[24] |
S. M. Ross,
Simulation, Fifth Edition, Academic Press, Oxford, 2013.
doi: 10.1016/B978-0-12-415825-2.00001-2. |
[25] |
P. Shang and Z. Wang,
Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system, Journal of Differential Equations, 250 (2011), 949-982.
doi: 10.1016/j.jde.2010.09.003. |
[26] |
M. Sun,
Singular solutions to the Riemann problem for a macroscopic production model, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 97 (2017), 916-931.
doi: 10.1002/zamm.201600171. |









[1] |
Chengjian Zhang, Lu Zhao. The attractors for 2nd-order stochastic delay lattice systems. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 575-590. doi: 10.3934/dcds.2017023 |
[2] |
N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59 |
[3] |
Pierre Carcaud, Pierre-Henri Chavanis, Mohammed Lemou, Florian Méhats. Evaporation law in kinetic gravitational systems described by simplified Landau models. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 907-934. doi: 10.3934/dcdsb.2010.14.907 |
[4] |
Pierre Degond, Hailiang Liu. Kinetic models for polymers with inertial effects. Networks and Heterogeneous Media, 2009, 4 (4) : 625-647. doi: 10.3934/nhm.2009.4.625 |
[5] |
Seung-Yeal Ha, Doron Levy. Particle, kinetic and fluid models for phototaxis. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 77-108. doi: 10.3934/dcdsb.2009.12.77 |
[6] |
Michael Herty, Gabriella Puppo, Sebastiano Roncoroni, Giuseppe Visconti. The BGK approximation of kinetic models for traffic. Kinetic and Related Models, 2020, 13 (2) : 279-307. doi: 10.3934/krm.2020010 |
[7] |
Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018 |
[8] |
Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Addendum to "Optimal control of multiscale systems using reduced-order models". Journal of Computational Dynamics, 2017, 4 (1&2) : 167-167. doi: 10.3934/jcd.2017006 |
[9] |
Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Optimal control of multiscale systems using reduced-order models. Journal of Computational Dynamics, 2014, 1 (2) : 279-306. doi: 10.3934/jcd.2014.1.279 |
[10] |
P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks. Mathematical Biosciences & Engineering, 2007, 4 (3) : 373-402. doi: 10.3934/mbe.2007.4.373 |
[11] |
Dieter Armbruster, Michael Herty, Xinping Wang, Lindu Zhao. Integrating release and dispatch policies in production models. Networks and Heterogeneous Media, 2015, 10 (3) : 511-526. doi: 10.3934/nhm.2015.10.511 |
[12] |
Simone Göttlich, Stephan Knapp. Semi-Markovian capacities in production network models. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3235-3258. doi: 10.3934/dcdsb.2017090 |
[13] |
Renato Colucci, Javier López-de-la-Cruz. Dynamics of fermentation models for the production of dry and sweet wine. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2015-2034. doi: 10.3934/cpaa.2020089 |
[14] |
Michael Herty, Christian Ringhofer. Averaged kinetic models for flows on unstructured networks. Kinetic and Related Models, 2011, 4 (4) : 1081-1096. doi: 10.3934/krm.2011.4.1081 |
[15] |
Pierre Monmarché. Hypocoercive relaxation to equilibrium for some kinetic models. Kinetic and Related Models, 2014, 7 (2) : 341-360. doi: 10.3934/krm.2014.7.341 |
[16] |
Alina Chertock, Changhui Tan, Bokai Yan. An asymptotic preserving scheme for kinetic models with singular limit. Kinetic and Related Models, 2018, 11 (4) : 735-756. doi: 10.3934/krm.2018030 |
[17] |
Ali K. Unver, Christian Ringhofer, M. Emir Koksal. Parameter extraction of complex production systems via a kinetic approach. Kinetic and Related Models, 2016, 9 (2) : 407-427. doi: 10.3934/krm.2016.9.407 |
[18] |
H. W. Broer, Renato Vitolo. Dynamical systems modeling of low-frequency variability in low-order atmospheric models. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 401-419. doi: 10.3934/dcdsb.2008.10.401 |
[19] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic and Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[20] |
H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]