-
Previous Article
Non-uniqueness of weak solutions of the Quantum-Hydrodynamic system
- KRM Home
- This Issue
-
Next Article
Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion
On a Boltzmann equation for Haldane statistics
1. | Mathematical Sciences, 41296 Göteborg, Sweden |
2. | Aix-Marseille University, CNRS, Centrale Marseille, I2M UMR 7373, 13453 Marseille, France |
The study of quantum quasi-particles at low temperatures including their statistics, is a frontier area in modern physics. In a seminal paper Haldane [
References:
[1] |
L. Arkeryd,
A quantum Boltzmann equation for Haldane statistics and hard forces; the spacehomogeneous initial value problem, Comm. Math. Phys., 298 (2010), 573-583.
doi: 10.1007/s00220-010-1046-3. |
[2] |
L. Arkeryd and A. Nouri,
Well-posedness of the Cauchy problem for a space-dependent anyon
Boltzmann equation, SIAM J. Math. Anal., 47 (2015), 4720-4742.
doi: 10.1137/15M1012335. |
[3] |
L. Arkeryd and A. Nouri,
On the Cauchy problem with large data for a space-dependent
Boltzmann-Nordheim boson equation, Comm. Math. Sci., 15 (2017), 1247-1264.
doi: 10.4310/CMS.2017.v15.n5.a4. |
[4] |
L. Arkeryd and A. Nouri, On the Cauchy problem with large data for the space-dependent Boltzmann-Nordheim equation Ⅲ, Preprint (2018), arXiv: 1801.02494. |
[5] |
R. K. Bhaduri, R. S. Bhalero and M. V. Murthy,
Haldane exclusion statistics and the Boltzmann equation, J. Stat. Phys., 82 (1996), 1659-1668.
|
[6] |
J.-M. Bony,
Solutions globales bornées pour les modèles discrets de l'équation de Boltzmann, en dimension 1 d'espace, Journées "Équations aux dérivées partielles ", Exp. XVI, École Polytech., Palaiseau, (1987), 1-10.
|
[7] |
M. Briant and A. Einav,
On the Cauchy problem for the homogeneous Boltzmann-Nordheim
equation for bosons: local existence, uniqueness and creation of moments, J. Stat. Phys., 163 (2016), 1108-1156.
doi: 10.1007/s10955-016-1517-9. |
[8] |
C. Cercignani and R. Illner,
Global weak solutions of the Boltzmann equation in a slab with
diffusive boundary conditions, Arch Rat. Mech. Anal., 134 (1996), 1-16.
doi: 10.1007/BF00376253. |
[9] |
M. Escobedo and J. L. Velazquez,
Finite time blow-up and condensation for the bosonic
Nordheim equation, Inv. Math, 200 (2015), 761-847.
doi: 10.1007/s00222-014-0539-7. |
[10] |
F. D. Haldane,
Fractional statistics in arbitrary dimensions: A generalization of the Pauli principle, Phys. Rev. Lett., 67 (1991), 937-940.
doi: 10.1103/PhysRevLett.67.937. |
[11] |
J. M. Leinaas and J. Myrheim,
On the theory of identical particles, Nuovo Cim. B, 37 (1977), 1-23.
|
[12] |
X. LU,
On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles, J. Stat. Phys., 116 (2004), 1597-1649.
doi: 10.1023/B:JOSS.0000041750.11320.9c. |
[13] |
X. Lu,
The Boltzmann equation for Bose-Einstein particles: Condensation in finite time, J. Stat. Phys., 150 (2013), 1138-1176.
doi: 10.1007/s10955-013-0725-9. |
[14] |
L. W. Nordheim,
On the kinetic methods in the new statistics and its applications in the electron theory of conductivity, Proc. Roy. Soc. London Ser. A, 119 (1928), 689-698.
|
[15] |
C. Villani,
On a new class of weak solutions to the spatially homogeneous Boltzmann and
Landau equations, Arch. Rat. Mech. Anal., 143 (1998), 273-307.
doi: 10.1007/s002050050106. |
show all references
References:
[1] |
L. Arkeryd,
A quantum Boltzmann equation for Haldane statistics and hard forces; the spacehomogeneous initial value problem, Comm. Math. Phys., 298 (2010), 573-583.
doi: 10.1007/s00220-010-1046-3. |
[2] |
L. Arkeryd and A. Nouri,
Well-posedness of the Cauchy problem for a space-dependent anyon
Boltzmann equation, SIAM J. Math. Anal., 47 (2015), 4720-4742.
doi: 10.1137/15M1012335. |
[3] |
L. Arkeryd and A. Nouri,
On the Cauchy problem with large data for a space-dependent
Boltzmann-Nordheim boson equation, Comm. Math. Sci., 15 (2017), 1247-1264.
doi: 10.4310/CMS.2017.v15.n5.a4. |
[4] |
L. Arkeryd and A. Nouri, On the Cauchy problem with large data for the space-dependent Boltzmann-Nordheim equation Ⅲ, Preprint (2018), arXiv: 1801.02494. |
[5] |
R. K. Bhaduri, R. S. Bhalero and M. V. Murthy,
Haldane exclusion statistics and the Boltzmann equation, J. Stat. Phys., 82 (1996), 1659-1668.
|
[6] |
J.-M. Bony,
Solutions globales bornées pour les modèles discrets de l'équation de Boltzmann, en dimension 1 d'espace, Journées "Équations aux dérivées partielles ", Exp. XVI, École Polytech., Palaiseau, (1987), 1-10.
|
[7] |
M. Briant and A. Einav,
On the Cauchy problem for the homogeneous Boltzmann-Nordheim
equation for bosons: local existence, uniqueness and creation of moments, J. Stat. Phys., 163 (2016), 1108-1156.
doi: 10.1007/s10955-016-1517-9. |
[8] |
C. Cercignani and R. Illner,
Global weak solutions of the Boltzmann equation in a slab with
diffusive boundary conditions, Arch Rat. Mech. Anal., 134 (1996), 1-16.
doi: 10.1007/BF00376253. |
[9] |
M. Escobedo and J. L. Velazquez,
Finite time blow-up and condensation for the bosonic
Nordheim equation, Inv. Math, 200 (2015), 761-847.
doi: 10.1007/s00222-014-0539-7. |
[10] |
F. D. Haldane,
Fractional statistics in arbitrary dimensions: A generalization of the Pauli principle, Phys. Rev. Lett., 67 (1991), 937-940.
doi: 10.1103/PhysRevLett.67.937. |
[11] |
J. M. Leinaas and J. Myrheim,
On the theory of identical particles, Nuovo Cim. B, 37 (1977), 1-23.
|
[12] |
X. LU,
On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles, J. Stat. Phys., 116 (2004), 1597-1649.
doi: 10.1023/B:JOSS.0000041750.11320.9c. |
[13] |
X. Lu,
The Boltzmann equation for Bose-Einstein particles: Condensation in finite time, J. Stat. Phys., 150 (2013), 1138-1176.
doi: 10.1007/s10955-013-0725-9. |
[14] |
L. W. Nordheim,
On the kinetic methods in the new statistics and its applications in the electron theory of conductivity, Proc. Roy. Soc. London Ser. A, 119 (1928), 689-698.
|
[15] |
C. Villani,
On a new class of weak solutions to the spatially homogeneous Boltzmann and
Landau equations, Arch. Rat. Mech. Anal., 143 (1998), 273-307.
doi: 10.1007/s002050050106. |
[1] |
Miguel Escobedo, Minh-Binh Tran. Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic and Related Models, 2015, 8 (3) : 493-531. doi: 10.3934/krm.2015.8.493 |
[2] |
Hung-Wen Kuo. Effect of abrupt change of the wall temperature in the kinetic theory. Kinetic and Related Models, 2019, 12 (4) : 765-789. doi: 10.3934/krm.2019030 |
[3] |
Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure and Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473 |
[4] |
José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401 |
[5] |
Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic and Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443 |
[6] |
Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361 |
[7] |
Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic and Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014 |
[8] |
Stéphane Brull, Bruno Dubroca, Corentin Prigent. A kinetic approach of the bi-temperature Euler model. Kinetic and Related Models, 2020, 13 (1) : 33-61. doi: 10.3934/krm.2020002 |
[9] |
Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic and Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345 |
[10] |
Ellen Baake, Michael Baake. Haldane linearisation done right: Solving the nonlinear recombination equation the easy way. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6645-6656. doi: 10.3934/dcds.2016088 |
[11] |
Huai-Dong Cao and Jian Zhou. On quantum de Rham cohomology theory. Electronic Research Announcements, 1999, 5: 24-34. |
[12] |
Xuguang Lu. Long time strong convergence to Bose-Einstein distribution for low temperature. Kinetic and Related Models, 2018, 11 (4) : 715-734. doi: 10.3934/krm.2018029 |
[13] |
Seung-Yeal Ha, Ho Lee, Seok Bae Yun. Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 115-143. doi: 10.3934/dcds.2009.24.115 |
[14] |
Kazuo Aoki, Ansgar Jüngel, Peter A. Markowich. Small velocity and finite temperature variations in kinetic relaxation models. Kinetic and Related Models, 2010, 3 (1) : 1-15. doi: 10.3934/krm.2010.3.1 |
[15] |
Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic and Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429 |
[16] |
Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic and Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621 |
[17] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[18] |
Hongxu Chen. Cercignani-Lampis boundary in the Boltzmann theory. Kinetic and Related Models, 2020, 13 (3) : 549-597. doi: 10.3934/krm.2020019 |
[19] |
Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145 |
[20] |
Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic and Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]