The study of quantum quasi-particles at low temperatures including their statistics, is a frontier area in modern physics. In a seminal paper Haldane [
Citation: |
L. Arkeryd
, A quantum Boltzmann equation for Haldane statistics and hard forces; the spacehomogeneous initial value problem, Comm. Math. Phys., 298 (2010)
, 573-583.
doi: 10.1007/s00220-010-1046-3.![]() ![]() ![]() |
|
L. Arkeryd
and A. Nouri
, Well-posedness of the Cauchy problem for a space-dependent anyon
Boltzmann equation, SIAM J. Math. Anal., 47 (2015)
, 4720-4742.
doi: 10.1137/15M1012335.![]() ![]() ![]() |
|
L. Arkeryd
and A. Nouri
, On the Cauchy problem with large data for a space-dependent
Boltzmann-Nordheim boson equation, Comm. Math. Sci., 15 (2017)
, 1247-1264.
doi: 10.4310/CMS.2017.v15.n5.a4.![]() ![]() ![]() |
|
L. Arkeryd and A. Nouri, On the Cauchy problem with large data for the space-dependent Boltzmann-Nordheim equation Ⅲ, Preprint (2018), arXiv: 1801.02494.
![]() |
|
R. K. Bhaduri
, R. S. Bhalero
and M. V. Murthy
, Haldane exclusion statistics and the Boltzmann equation, J. Stat. Phys., 82 (1996)
, 1659-1668.
![]() |
|
J.-M. Bony
, Solutions globales bornées pour les modèles discrets de l'équation de Boltzmann, en dimension 1 d'espace, Journées "Équations aux dérivées partielles ", Exp. XVI, École Polytech., Palaiseau, (1987)
, 1-10.
![]() ![]() |
|
M. Briant
and A. Einav
, On the Cauchy problem for the homogeneous Boltzmann-Nordheim
equation for bosons: local existence, uniqueness and creation of moments, J. Stat. Phys., 163 (2016)
, 1108-1156.
doi: 10.1007/s10955-016-1517-9.![]() ![]() ![]() |
|
C. Cercignani
and R. Illner
, Global weak solutions of the Boltzmann equation in a slab with
diffusive boundary conditions, Arch Rat. Mech. Anal., 134 (1996)
, 1-16.
doi: 10.1007/BF00376253.![]() ![]() ![]() |
|
M. Escobedo
and J. L. Velazquez
, Finite time blow-up and condensation for the bosonic
Nordheim equation, Inv. Math, 200 (2015)
, 761-847.
doi: 10.1007/s00222-014-0539-7.![]() ![]() ![]() |
|
F. D. Haldane
, Fractional statistics in arbitrary dimensions: A generalization of the Pauli principle, Phys. Rev. Lett., 67 (1991)
, 937-940.
doi: 10.1103/PhysRevLett.67.937.![]() ![]() ![]() |
|
J. M. Leinaas
and J. Myrheim
, On the theory of identical particles, Nuovo Cim. B, 37 (1977)
, 1-23.
![]() |
|
X. LU
, On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles, J. Stat. Phys., 116 (2004)
, 1597-1649.
doi: 10.1023/B:JOSS.0000041750.11320.9c.![]() ![]() ![]() |
|
X. Lu
, The Boltzmann equation for Bose-Einstein particles: Condensation in finite time, J. Stat. Phys., 150 (2013)
, 1138-1176.
doi: 10.1007/s10955-013-0725-9.![]() ![]() ![]() |
|
L. W. Nordheim
, On the kinetic methods in the new statistics and its applications in the electron theory of conductivity, Proc. Roy. Soc. London Ser. A, 119 (1928)
, 689-698.
![]() |
|
C. Villani
, On a new class of weak solutions to the spatially homogeneous Boltzmann and
Landau equations, Arch. Rat. Mech. Anal., 143 (1998)
, 273-307.
doi: 10.1007/s002050050106.![]() ![]() ![]() |