In this paper, it is proved that the macroscopic parts of the relativistic Boltzmann equation will be continuous, even though the macroscopic components are discontinuity initially. The Lorentz transformation plays an important role to prove the continuity of nonlinear term.
Citation: |
[1] |
K. Bichteler, On the Cauchy problem of the relativistic Boltzmann equation, Commun. Math. Phys., 4 (1967), 352-364.
doi: 10.1007/BF01653649.![]() ![]() ![]() |
[2] |
L. Boudin and L. Desvillettes, On the singularities of the global small solution soft the full Boltzmann equation, Monatsch. Math., 131 (2000), 91-108.
doi: 10.1007/s006050070015.![]() ![]() ![]() |
[3] |
R. J. Duan, M. R. Li and T. Yang, Propagation of singularities in the solutions to the Boltzmann equation near equilibrium, Math. Models Methods Appl. Sci., 18 (2008), 1093-1114.
doi: 10.1142/S0218202508002966.![]() ![]() ![]() |
[4] |
M. Dudyński and M. L. Ekiel-Jeżewska, Global existence proof for relativistic Boltzmann equation, J.Stat. Phys., 66 (1992), 991-1001.
doi: 10.1007/BF01055712.![]() ![]() ![]() |
[5] |
M. Dudyński and M. L. Ekiel-Jeżewska, Causality of the linearized relativistic Boltzmann equation, Phys. Rev. Lett., 55 (1985), 2831-2834.
doi: 10.1103/PhysRevLett.55.2831.![]() ![]() ![]() |
[6] |
M. Dudyński and M. L. Ekiel-Jeżewska, Errata: Causality of the linearized relativistic Boltzmann equation, Investigación Oper. 6 (1985), 2228.
![]() ![]() |
[7] |
M. Dudyński and M. L. Ekiel-Jeżewska, On the linearized relativistic Boltzmann equation. Ⅰ. Existence of solutions, Commun. Math. Phys., 115 (1988), 607-629.
doi: 10.1007/BF01224130.![]() ![]() ![]() |
[8] |
M. Dudyński, On the linearized relativistic Boltzmann equation. Ⅱ. Existence of hydro-dynamics, J. Stat. Phys., 57 (1989), 199–245.
doi: 10.1007/BF01023641.![]() ![]() ![]() |
[9] |
R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics, Philadelphia, 1996.
doi: 10.1137/1.9781611971477.![]() ![]() ![]() |
[10] |
R. T. Glassey and W. A. Strauss, Asymptotic stability of the relativistic Maxwellian, Publ. Res. Inst. Math. Sci., 29 (1993), 301-347.
![]() |
[11] |
R. T. Glassey and W. A. Strauss, Asymptotic stability of the relativistic Maxwellian via fourteen moments, Trans. Th. Stat. Phys., 24 (1995), 657-678.
doi: 10.1080/00411459508206020.![]() ![]() ![]() |
[12] |
R. T. Glassey, Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data, Commun. Math. Phys., 264 (2006), 705-724.
doi: 10.1007/s00220-006-1522-y.![]() ![]() ![]() |
[13] |
F. Golse, P. L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76 (1988), 110-125.
doi: 10.1016/0022-1236(88)90051-1.![]() ![]() ![]() |
[14] |
L. Hsiao and H. Yu, Asymptotic stability of the relativistic Maxwellian, Math. Meth. Appl. Sci., 29 (2006), 1481-1499.
doi: 10.1002/mma.736.![]() ![]() ![]() |
[15] |
F. M. Huang and Y. Wang, Macroscopic regularity for the Boltzmann equation, Acta Math. Sci. Ser. B Engl. Ed., 38 (2018), 1549-1566.
doi: 10.1016/S0252-9602(18)30831-2.![]() ![]() ![]() |
[16] |
A. Lichnerowicz and R. Marrot, ropriétés statistiques des ensembles de particules en relativité restreinte, C. R. Acad. Sci. Paris, 210 (1940), 759-761.
![]() ![]() |
[17] |
R. M. Strain, Asymptotic stability of the relativistic boltzmann equation for the soft potentials, Commun. Math. Phys., 300 (2010), 529-597.
doi: 10.1007/s00220-010-1129-1.![]() ![]() ![]() |
[18] |
R. M. Strain, An Energy Method in Collisional Kinetic Theory, Ph.D. dissertation, Division of Applied Mathematics, Brown University, May 2005.
![]() |
[19] |
Y. Wang, Global well-posedness of the relativistic Boltzmann equation, SIAM J. Math. Anal., 50 (2018), 5637-5694.
doi: 10.1137/17M112600X.![]() ![]() ![]() |