-
Previous Article
Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation
- KRM Home
- This Issue
-
Next Article
Sonic-supersonic solutions for the two-dimensional pseudo-steady full Euler equations
Memory effects in measure transport equations
Dip. di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, via Scarpa 16, 00161 Roma, Italy |
Transport equations with a nonlocal velocity field have been introduced as a continuum model for interacting particle systems arising in physics, chemistry and biology. Fractional time derivatives, given by convolution integrals of the time-derivative with power-law kernels, are typical for memory effects in complex systems. In this paper we consider a nonlinear transport equation with a fractional time-derivative. We provide a well-posedness theory for weak measure solutions of the problem and an integral formula which generalizes the classical push-forward representation formula to this setting.
References:
[1] |
M. Allen, L. Caffarelli and A. Vasseur,
A parabolic problem with a fractional time derivative, Arch. Ration.Mech. Anal., 221 (2016), 603-630.
doi: 10.1007/s00205-016-0969-z. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd Edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[3] |
J. A. Cañizo, J. A. Carrillo and J. Rosado,
A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.
doi: 10.1142/S0218202511005131. |
[4] |
E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, MS&A, Modeling, Simulation and Applications, 12, Springer, Cham, 2014.
doi: 10.1007/978-3-319-06620-2. |
[5] |
J. H. M. Evers, S. C. Hille and A. Muntean,
Measure-valued mass evolution problems with flux boundary conditions and solution-dependent velocities, SIAM J. Math. Anal., 48 (2016), 1929-1953.
doi: 10.1137/15M1031655. |
[6] |
M. Fornasier and F. Solombrino,
Mean-field optimal control, ESAIM Control Optim. Calc. Var., 20 (2014), 1123-1152.
doi: 10.1051/cocv/2014009. |
[7] |
M. Hahn, K. Kobayashi and S. Umarov,
SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations, J. Theor. Probab., 25 (2012), 262-279.
doi: 10.1007/s10959-010-0289-4. |
[8] |
Y. Luchko and M. Yamamoto,
General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems, Fract. Calc. Appl. Anal., 19 (2016), 676-695.
doi: 10.1515/fca-2016-0036. |
[9] |
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.
doi: 10.1142/9781848163300.![]() ![]() ![]() |
[10] |
M. M. Meerschaert and H.-P. Scheffler,
Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Prob., 41 (2004), 623-638.
doi: 10.1239/jap/1091543414. |
[11] |
M. M. Meerschaert and P. Straka,
Inverse stable subordinators, Math. Model Nat Phenom., 8 (2013), 1-16.
doi: 10.1051/mmnp/20138201. |
[12] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 77 pp.
doi: 10.1016/S0370-1573(00)00070-3. |
[13] |
E. Orsingher and L. Beghin,
Fractional diffusion equations and processes with randomly varying time, Ann. Probab., 37 (2009), 206-249.
doi: 10.1214/08-AOP401. |
[14] |
A. Piryatinska, A. I. Saichev and W. A. Woyczynski,
Models of anomalous diffusion: The subdiffusive case, Physica A: Statistical Mechanics and its Applications, 349 (2005), 375-420.
doi: 10.1016/j.physa.2004.11.003. |
[15] |
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[16] |
F. Poupaud and M. Rascle,
Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients, Comm. Partial Differential Equations, 22 (1997), 337-358.
doi: 10.1080/03605309708821265. |
[17] |
V. E. Tarasov, Review of some promising fractional physical models, Internat. J. Modern Phys. B, 27 (2013), 1330005, 32 pp.
doi: 10.1142/S0217979213300053. |
show all references
References:
[1] |
M. Allen, L. Caffarelli and A. Vasseur,
A parabolic problem with a fractional time derivative, Arch. Ration.Mech. Anal., 221 (2016), 603-630.
doi: 10.1007/s00205-016-0969-z. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd Edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[3] |
J. A. Cañizo, J. A. Carrillo and J. Rosado,
A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.
doi: 10.1142/S0218202511005131. |
[4] |
E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, MS&A, Modeling, Simulation and Applications, 12, Springer, Cham, 2014.
doi: 10.1007/978-3-319-06620-2. |
[5] |
J. H. M. Evers, S. C. Hille and A. Muntean,
Measure-valued mass evolution problems with flux boundary conditions and solution-dependent velocities, SIAM J. Math. Anal., 48 (2016), 1929-1953.
doi: 10.1137/15M1031655. |
[6] |
M. Fornasier and F. Solombrino,
Mean-field optimal control, ESAIM Control Optim. Calc. Var., 20 (2014), 1123-1152.
doi: 10.1051/cocv/2014009. |
[7] |
M. Hahn, K. Kobayashi and S. Umarov,
SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations, J. Theor. Probab., 25 (2012), 262-279.
doi: 10.1007/s10959-010-0289-4. |
[8] |
Y. Luchko and M. Yamamoto,
General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems, Fract. Calc. Appl. Anal., 19 (2016), 676-695.
doi: 10.1515/fca-2016-0036. |
[9] |
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.
doi: 10.1142/9781848163300.![]() ![]() ![]() |
[10] |
M. M. Meerschaert and H.-P. Scheffler,
Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Prob., 41 (2004), 623-638.
doi: 10.1239/jap/1091543414. |
[11] |
M. M. Meerschaert and P. Straka,
Inverse stable subordinators, Math. Model Nat Phenom., 8 (2013), 1-16.
doi: 10.1051/mmnp/20138201. |
[12] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 77 pp.
doi: 10.1016/S0370-1573(00)00070-3. |
[13] |
E. Orsingher and L. Beghin,
Fractional diffusion equations and processes with randomly varying time, Ann. Probab., 37 (2009), 206-249.
doi: 10.1214/08-AOP401. |
[14] |
A. Piryatinska, A. I. Saichev and W. A. Woyczynski,
Models of anomalous diffusion: The subdiffusive case, Physica A: Statistical Mechanics and its Applications, 349 (2005), 375-420.
doi: 10.1016/j.physa.2004.11.003. |
[15] |
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[16] |
F. Poupaud and M. Rascle,
Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients, Comm. Partial Differential Equations, 22 (1997), 337-358.
doi: 10.1080/03605309708821265. |
[17] |
V. E. Tarasov, Review of some promising fractional physical models, Internat. J. Modern Phys. B, 27 (2013), 1330005, 32 pp.
doi: 10.1142/S0217979213300053. |
[1] |
Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032 |
[2] |
Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2020173 |
[3] |
Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021026 |
[4] |
Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control and Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017 |
[5] |
Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269 |
[6] |
Maria Michaela Porzio, Flavia Smarrazzo, Alberto Tesei. Radon measure-valued solutions of unsteady filtration equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022040 |
[7] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[8] |
Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233 |
[9] |
Yu Liu, Ting Zhang. On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021307 |
[10] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023 |
[11] |
Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 |
[12] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3747-3761. doi: 10.3934/dcdss.2020435 |
[13] |
Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675 |
[14] |
Piotr Gwiazda, Sander C. Hille, Kamila Łyczek, Agnieszka Świerczewska-Gwiazda. Differentiability in perturbation parameter of measure solutions to perturbed transport equation. Kinetic and Related Models, 2019, 12 (5) : 1093-1108. doi: 10.3934/krm.2019041 |
[15] |
Pu-Zhao Kow, Masato Kimura. The Lewy-Stampacchia inequality for the fractional Laplacian and its application to anomalous unidirectional diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2935-2957. doi: 10.3934/dcdsb.2021167 |
[16] |
Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations and Control Theory, 2022, 11 (2) : 439-455. doi: 10.3934/eect.2021007 |
[17] |
Martin Frank, Weiran Sun. Fractional diffusion limits of non-classical transport equations. Kinetic and Related Models, 2018, 11 (6) : 1503-1526. doi: 10.3934/krm.2018059 |
[18] |
Taposh Kumar Das, Óscar López Pouso. New insights into the numerical solution of the Boltzmann transport equation for photons. Kinetic and Related Models, 2014, 7 (3) : 433-461. doi: 10.3934/krm.2014.7.433 |
[19] |
Yuanwei Qi. Anomalous exponents and RG for nonlinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 738-745. doi: 10.3934/proc.2005.2005.738 |
[20] |
Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations and Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]