December  2019, 12(6): 1297-1312. doi: 10.3934/krm.2019050

Large amplitude stationary solutions of the Morrow model of gas ionization

1. 

Department of Mathematics and Lefschetz Center for Dynamical Systems, Brown University, Providence, RI 02912, USA

2. 

Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan

* Corresponding author: Masahiro Suzuki

Received  January 2019 Revised  May 2019 Published  September 2019

Fund Project: M. Suzuki is supported by JSPS KAKENHI Grant Numbers 26800067 and 18K03364.

We consider the steady states of a gas between two parallel plates that is ionized by a strong electric field so as to create a plasma. We use global bifurcation theory to prove that there is a curve $ \mathcal{K} $ of such states with the following property. The curve begins at the sparking voltage and either the particle density becomes unbounded or the curve ends at the anti-sparking voltage.

Citation: Walter A. Strauss, Masahiro Suzuki. Large amplitude stationary solutions of the Morrow model of gas ionization. Kinetic and Related Models, 2019, 12 (6) : 1297-1312. doi: 10.3934/krm.2019050
References:
[1]

I. Abbas and P. Bayle, A critical analysis of ionising wave propagation mechanisms in breakdown, J. Phys. D: Appl. Phys., 13 (1980), 1055-1068.  doi: 10.1088/0022-3727/13/6/015.

[2]

Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics, 50. American Mathematical Society, Providence, 2002. doi: 10.1090/gsm/050.

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011.

[4] B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation: An Introduction, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2003.  doi: 10.1515/9781400884339.
[5]

A. ConstantinW. Strauss and E. Vǎrvǎrucǎ, Global bifurcation of steady gravity water waves with critical layers, Acta. Math., 217 (2016), 195-262.  doi: 10.1007/s11511-017-0144-x.

[6]

M. G. Crandall and P. H. Rabinowitz, Nonlinear Sturm-Liouville eigenvalue problems and topological degree, J. Math. Mech., 19 (1969/1970), 1083-1102. 

[7]

E. N. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc., 26 (1973), 359-384.  doi: 10.1112/plms/s3-26.2.359.

[8]

P. Degond and B. Lucquin-Desreux, Mathematical models of electrical discharges in air at atmospheric pressure: A derivation from asymptotic analysis, Int. J. Compu. Sci. Math., 1 (2007), 58-97.  doi: 10.1504/IJCSM.2007.013764.

[9]

S. K. Dhali and P. F. Williams, Twodimensional studies of streamers in gases, J. Appl. Phys., 62 (1987), 4694-4707. 

[10]

P. A. Durbin and L. Turyn, Analysis of the positive DC corona between coaxial cylinders, J. Phys. D: Appl. Phys., 20 (1987), 1490-1496.  doi: 10.1088/0022-3727/20/11/020.

[11]

H. Kielhöfer, Bifurcation Theory, An Introduction with Applications to Partial Differential Equations, Second edition, Applied Mathematical Sciences, 156. Springer, New York, 2012. doi: 10.1007/978-1-4614-0502-3.

[12]

A. A. Kulikovsky, Positive streamer between parallel plate electrodes in atmospheric pressure air, IEEE Trans. Plasma Sci., 30 (1997), 441-450.  doi: 10.1088/0022-3727/30/3/017.

[13]

A. A. Kulikovsky, The role of photoionization in positive streamer dynamics, J. Phys. D: Appl. Phys., 33 (2000), 1514-1524.  doi: 10.1088/0022-3727/33/12/314.

[14]

A. Luque, V. Ratushnaya and U. Ebert, Positive and negative streamers in ambient air: Modeling evolution and velocities, J. Phys. D: Appl. Phys., 41 (2008), 234005. doi: 10.1088/0022-3727/41/23/234005.

[15]

R. Morrow, Theory of negative corona in oxygen, Phys. Rev. A, 32 (1985), 1799-1809.  doi: 10.1103/PhysRevA.32.1799.

[16]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.

[17]

Y. P. Raizer, Gas Discharge Physics, Springer, 2001.

[18]

M. Suzuki and A. Tani, Time-local solvability of the Degond-Lucquin-Desreux-Morrow model for gas discharge, SIAM Math. Anal., 50 (2018), 5096-5118.  doi: 10.1137/17M111852X.

[19]

M. Suzuki and A. Tani, Bifurcation analysis of the Degond-Lucquin-Desreux-Morrow model for gas discharge, submitted. doi: 10.1137/17M111852X.

[20] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9781139171755.
[21]

http://www.physics.csbsju.edu/370/jcalvert/dischg.htm.html.

show all references

References:
[1]

I. Abbas and P. Bayle, A critical analysis of ionising wave propagation mechanisms in breakdown, J. Phys. D: Appl. Phys., 13 (1980), 1055-1068.  doi: 10.1088/0022-3727/13/6/015.

[2]

Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics, 50. American Mathematical Society, Providence, 2002. doi: 10.1090/gsm/050.

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011.

[4] B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation: An Introduction, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2003.  doi: 10.1515/9781400884339.
[5]

A. ConstantinW. Strauss and E. Vǎrvǎrucǎ, Global bifurcation of steady gravity water waves with critical layers, Acta. Math., 217 (2016), 195-262.  doi: 10.1007/s11511-017-0144-x.

[6]

M. G. Crandall and P. H. Rabinowitz, Nonlinear Sturm-Liouville eigenvalue problems and topological degree, J. Math. Mech., 19 (1969/1970), 1083-1102. 

[7]

E. N. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc., 26 (1973), 359-384.  doi: 10.1112/plms/s3-26.2.359.

[8]

P. Degond and B. Lucquin-Desreux, Mathematical models of electrical discharges in air at atmospheric pressure: A derivation from asymptotic analysis, Int. J. Compu. Sci. Math., 1 (2007), 58-97.  doi: 10.1504/IJCSM.2007.013764.

[9]

S. K. Dhali and P. F. Williams, Twodimensional studies of streamers in gases, J. Appl. Phys., 62 (1987), 4694-4707. 

[10]

P. A. Durbin and L. Turyn, Analysis of the positive DC corona between coaxial cylinders, J. Phys. D: Appl. Phys., 20 (1987), 1490-1496.  doi: 10.1088/0022-3727/20/11/020.

[11]

H. Kielhöfer, Bifurcation Theory, An Introduction with Applications to Partial Differential Equations, Second edition, Applied Mathematical Sciences, 156. Springer, New York, 2012. doi: 10.1007/978-1-4614-0502-3.

[12]

A. A. Kulikovsky, Positive streamer between parallel plate electrodes in atmospheric pressure air, IEEE Trans. Plasma Sci., 30 (1997), 441-450.  doi: 10.1088/0022-3727/30/3/017.

[13]

A. A. Kulikovsky, The role of photoionization in positive streamer dynamics, J. Phys. D: Appl. Phys., 33 (2000), 1514-1524.  doi: 10.1088/0022-3727/33/12/314.

[14]

A. Luque, V. Ratushnaya and U. Ebert, Positive and negative streamers in ambient air: Modeling evolution and velocities, J. Phys. D: Appl. Phys., 41 (2008), 234005. doi: 10.1088/0022-3727/41/23/234005.

[15]

R. Morrow, Theory of negative corona in oxygen, Phys. Rev. A, 32 (1985), 1799-1809.  doi: 10.1103/PhysRevA.32.1799.

[16]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.

[17]

Y. P. Raizer, Gas Discharge Physics, Springer, 2001.

[18]

M. Suzuki and A. Tani, Time-local solvability of the Degond-Lucquin-Desreux-Morrow model for gas discharge, SIAM Math. Anal., 50 (2018), 5096-5118.  doi: 10.1137/17M111852X.

[19]

M. Suzuki and A. Tani, Bifurcation analysis of the Degond-Lucquin-Desreux-Morrow model for gas discharge, submitted. doi: 10.1137/17M111852X.

[20] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9781139171755.
[21]

http://www.physics.csbsju.edu/370/jcalvert/dischg.htm.html.

Figure 4.  voltage–current curve
Figure 1.  case 1
Figure 2.  case 2
Figure 3.  alternative (ⅱ)
[1]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[2]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[3]

Francesca R. Guarguaglini. Global solutions for a chemotaxis hyperbolic-parabolic system on networks with nonhomogeneous boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1057-1087. doi: 10.3934/cpaa.2020049

[4]

G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205

[5]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations and Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[6]

Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834

[7]

Bopeng Rao, Xu Zhang. Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2789-2809. doi: 10.3934/cpaa.2021119

[8]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

[9]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

[10]

Francisco Ortegón Gallego, María Teresa González Montesinos. Existence of a capacity solution to a coupled nonlinear parabolic--elliptic system. Communications on Pure and Applied Analysis, 2007, 6 (1) : 23-42. doi: 10.3934/cpaa.2007.6.23

[11]

Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005

[12]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[13]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967

[14]

Brahim Allal, Abdelkarim Hajjaj, Jawad Salhi, Amine Sbai. Boundary controllability for a coupled system of degenerate/singular parabolic equations. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021055

[15]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[16]

Julián López-Gómez, Marcela Molina-Meyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 923-946. doi: 10.3934/dcdsb.2017047

[17]

Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592

[18]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122

[19]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[20]

Louis Tebou. Stabilization of some coupled hyperbolic/parabolic equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1601-1620. doi: 10.3934/dcdsb.2010.14.1601

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (204)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]