February  2020, 13(1): 33-61. doi: 10.3934/krm.2020002

A kinetic approach of the bi-temperature Euler model

1. 

Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400 Talence, France

2. 

Univ. Bordeaux, Laboratoire des Composites ThermoStructuraux (LCTS), UMR 5801: CNRS-Herakles(Safran)-CEA-UBx, 3, Allée de La Boétie, 33600 Pessac, France

Received  November 2018 Revised  September 2019 Published  December 2019

We are interested in the numerical approximation of the bi-temperature Euler equations, which is a non conservative hyperbolic system introduced in [4]. We consider a conservative underlying kinetic model, the Vlasov-BGK-Poisson system. We perform a scaling on this system in order to obtain its hydrodynamic limit. We present a deterministic numerical method to approximate this kinetic system. The method is shown to be Asymptotic-Preserving in the hydrodynamic limit, which means that any stability condition of the method is independant of any parameter $ \varepsilon $, with $ \varepsilon \rightarrow 0 $. We prove that the method is, under appropriate choices, consistant with the solution for bi-temperature Euler. Finally, our method is compared to methods for the fluid model (HLL, Suliciu).

Citation: Stéphane Brull, Bruno Dubroca, Corentin Prigent. A kinetic approach of the bi-temperature Euler model. Kinetic and Related Models, 2020, 13 (1) : 33-61. doi: 10.3934/krm.2020002
References:
[1]

R. Abgrall and S. Karni, A comment on the computation of non-conservative products, Journal of Computational Physics, 229 (2010), 2759-2763.  doi: 10.1016/j.jcp.2009.12.015.

[2]

P. AndriesP. Le TallecJ.-P. Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, European Journal of Mechanics-B/Fluids, 19 (2000), 813-830.  doi: 10.1016/S0997-7546(00)01103-1.

[3]

D. Aregba and S. Brull, About viscous approximations of the bitemperature Euler system, Communications in Math Sciences, 17 (2019), 1135-1147.  doi: 10.4310/CMS.2019.v17.n4.a14.

[4]

D. Aregba-DriolletJ. BreilS. BrullB. Dubroca and E. Estibals, Modelling and numerical approximation for the nonconservative bitemperature Euler model, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 1353-1383.  doi: 10.1051/m2an/2017007.

[5]

R. BelaouarN. CrouseillesP. Degond and E. Sonnendrücker, An asymptotically stable semi-Lagrangian scheme in the quasi-neutral limit, J. Sci. Comput., 41 (2009), 341-365.  doi: 10.1007/s10915-009-9302-4.

[6]

A. V. BobylevM. BisiM. GroppiG. Spiga and I. F. Potapenko, A general consistent BGK model for gas mixtures, Kinetic and Related Models, 11 (2018), 1377-1393.  doi: 10.3934/krm.2018054.

[7]

F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Birkauser Verlag, Basel, 2004. doi: 10.1007/b93802.

[8]

S. BrullP. DegondF. Deluzet and A. Mouton, Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model, Kinetic and Related Models, 4 (2011), 991-1023. 

[9]

S. Brull, X. Lhebrard and B. Dubroca, Modelling and entropy satisfying relaxation scheme for the nonconservative bitemperature Euler system with transverse magnetic field, preprint.

[10]

S. Brull and L. Mieussens, Local discrete velocity grids for deterministic rarefied flow simulations, J. Comput. Phys., 266 (2014), 22-46.  doi: 10.1016/j.jcp.2014.01.050.

[11]

C. Chalons and F. Coquel, A new comment on the computation of non-conservative products using Roe-type path conservative schemes, J. Comput. Phys., 335 (2017), 592-604.  doi: 10.1016/j.jcp.2017.01.016.

[12]

C. ChalonsM. Girardin and S. Kokh, Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms, SIAM Journal on Scientific Computing, 35 (2013), A2874-A2902.  doi: 10.1137/130908671.

[13]

F. Chen, Introduction to Plasma Physics and Controlled Fusion, Number vol. 1 in Introduction to Plasma Physics and Controlled Fusion. Springer, 1984.

[14]

F. Coquel and C. Marmignon, Numerical methods for weakly ionized gas, Astrophysics and Space Science, 260 (1998), 15-27.  doi: 10.1023/A:1001870802972.

[15]

P. CrispelP. Degond and M.-H. Vignal, An asymptotically stable discretization for the Euler-Poisson system in the quasi-neutral limit, C. R. Math. Acad. Sci. Paris, 341 (2005), 323-328.  doi: 10.1016/j.crma.2005.07.008.

[16]

P. CrispelP. Degond and M.-H. Vignal, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit, J. Comput. Phys., 223 (2007), 208-234.  doi: 10.1016/j.jcp.2006.09.004.

[17]

G. Dal MasoP. Le Floch and F. Murat., Definition and weak stability of nonconservative products, Journal de Mathématiques Pures et Appliquées, 74 (1995), 483-548. 

[18]

P. Degond and F. Deluzet, Asymptotic-preserving methods and multiscale models for plasma physics, J. Comput. Phys., 336 (2017), 429-457.  doi: 10.1016/j.jcp.2017.02.009.

[19]

P. DegondF. Deluzet and D. Savelief, Numerical approximation of the Euler-Maxwell model in the quasineutral limit, J. Comput. Phys., 231 (2012), 1917-1946.  doi: 10.1016/j.jcp.2011.11.011.

[20]

P. DegondH. LiuD. Savelief and M.-H. Vignal, Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit, J. Sci. Comput., 51 (2012), 59-86.  doi: 10.1007/s10915-011-9495-1.

[21]

M. Dumbser and D. S. Balsara, A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, Journal of Computational Physics, 304 (2016), 275-319.  doi: 10.1016/j.jcp.2015.10.014.

[22]

S. GuissetS. BrullE. D'HumièresB. DubrocaS. Karpov and I. Potapenko, Asymptotic-preserving scheme for the M1-Maxwell system in the quasi-neutral regime, Communications in Computational Physics, 19 (2016), 301-328.  doi: 10.4208/cicp.131014.030615a.

[23]

S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21 (1999), 441-454.  doi: 10.1137/S1064827598334599.

[24]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma, Kinetic and Related Models, 10 (2017), 445-465.  doi: 10.3934/krm.2017017.

[25]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture of polyatomic molecules, Communication in Mathematical Sciences, 17 (2019), 149-173.  doi: 10.4310/CMS.2019.v17.n1.a6.

[26]

P. G. LeFloch and S. Mishra, Numerical methods with controlled dissipation for small-scale dependent shocks, Acta Numerica, 23 (2014), 743-816.  doi: 10.1017/S0962492914000099.

[27]

C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.

[28]

C. Pars, Path-conservative numerical methods for nonconservative hyperbolic systems, In Numerical Methods for Balance Laws, volume 24 of Quad. Mat., pages 67–121. Dept. Math., Seconda Univ. Napoli, Caserta, 2009.

[29]

K. XuX. He and C. Cai, Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations, J. Comp. Phys., 227 (2008), 6779-6794.  doi: 10.1016/j.jcp.2008.03.035.

show all references

References:
[1]

R. Abgrall and S. Karni, A comment on the computation of non-conservative products, Journal of Computational Physics, 229 (2010), 2759-2763.  doi: 10.1016/j.jcp.2009.12.015.

[2]

P. AndriesP. Le TallecJ.-P. Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, European Journal of Mechanics-B/Fluids, 19 (2000), 813-830.  doi: 10.1016/S0997-7546(00)01103-1.

[3]

D. Aregba and S. Brull, About viscous approximations of the bitemperature Euler system, Communications in Math Sciences, 17 (2019), 1135-1147.  doi: 10.4310/CMS.2019.v17.n4.a14.

[4]

D. Aregba-DriolletJ. BreilS. BrullB. Dubroca and E. Estibals, Modelling and numerical approximation for the nonconservative bitemperature Euler model, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 1353-1383.  doi: 10.1051/m2an/2017007.

[5]

R. BelaouarN. CrouseillesP. Degond and E. Sonnendrücker, An asymptotically stable semi-Lagrangian scheme in the quasi-neutral limit, J. Sci. Comput., 41 (2009), 341-365.  doi: 10.1007/s10915-009-9302-4.

[6]

A. V. BobylevM. BisiM. GroppiG. Spiga and I. F. Potapenko, A general consistent BGK model for gas mixtures, Kinetic and Related Models, 11 (2018), 1377-1393.  doi: 10.3934/krm.2018054.

[7]

F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Birkauser Verlag, Basel, 2004. doi: 10.1007/b93802.

[8]

S. BrullP. DegondF. Deluzet and A. Mouton, Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model, Kinetic and Related Models, 4 (2011), 991-1023. 

[9]

S. Brull, X. Lhebrard and B. Dubroca, Modelling and entropy satisfying relaxation scheme for the nonconservative bitemperature Euler system with transverse magnetic field, preprint.

[10]

S. Brull and L. Mieussens, Local discrete velocity grids for deterministic rarefied flow simulations, J. Comput. Phys., 266 (2014), 22-46.  doi: 10.1016/j.jcp.2014.01.050.

[11]

C. Chalons and F. Coquel, A new comment on the computation of non-conservative products using Roe-type path conservative schemes, J. Comput. Phys., 335 (2017), 592-604.  doi: 10.1016/j.jcp.2017.01.016.

[12]

C. ChalonsM. Girardin and S. Kokh, Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms, SIAM Journal on Scientific Computing, 35 (2013), A2874-A2902.  doi: 10.1137/130908671.

[13]

F. Chen, Introduction to Plasma Physics and Controlled Fusion, Number vol. 1 in Introduction to Plasma Physics and Controlled Fusion. Springer, 1984.

[14]

F. Coquel and C. Marmignon, Numerical methods for weakly ionized gas, Astrophysics and Space Science, 260 (1998), 15-27.  doi: 10.1023/A:1001870802972.

[15]

P. CrispelP. Degond and M.-H. Vignal, An asymptotically stable discretization for the Euler-Poisson system in the quasi-neutral limit, C. R. Math. Acad. Sci. Paris, 341 (2005), 323-328.  doi: 10.1016/j.crma.2005.07.008.

[16]

P. CrispelP. Degond and M.-H. Vignal, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit, J. Comput. Phys., 223 (2007), 208-234.  doi: 10.1016/j.jcp.2006.09.004.

[17]

G. Dal MasoP. Le Floch and F. Murat., Definition and weak stability of nonconservative products, Journal de Mathématiques Pures et Appliquées, 74 (1995), 483-548. 

[18]

P. Degond and F. Deluzet, Asymptotic-preserving methods and multiscale models for plasma physics, J. Comput. Phys., 336 (2017), 429-457.  doi: 10.1016/j.jcp.2017.02.009.

[19]

P. DegondF. Deluzet and D. Savelief, Numerical approximation of the Euler-Maxwell model in the quasineutral limit, J. Comput. Phys., 231 (2012), 1917-1946.  doi: 10.1016/j.jcp.2011.11.011.

[20]

P. DegondH. LiuD. Savelief and M.-H. Vignal, Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit, J. Sci. Comput., 51 (2012), 59-86.  doi: 10.1007/s10915-011-9495-1.

[21]

M. Dumbser and D. S. Balsara, A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, Journal of Computational Physics, 304 (2016), 275-319.  doi: 10.1016/j.jcp.2015.10.014.

[22]

S. GuissetS. BrullE. D'HumièresB. DubrocaS. Karpov and I. Potapenko, Asymptotic-preserving scheme for the M1-Maxwell system in the quasi-neutral regime, Communications in Computational Physics, 19 (2016), 301-328.  doi: 10.4208/cicp.131014.030615a.

[23]

S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21 (1999), 441-454.  doi: 10.1137/S1064827598334599.

[24]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma, Kinetic and Related Models, 10 (2017), 445-465.  doi: 10.3934/krm.2017017.

[25]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture of polyatomic molecules, Communication in Mathematical Sciences, 17 (2019), 149-173.  doi: 10.4310/CMS.2019.v17.n1.a6.

[26]

P. G. LeFloch and S. Mishra, Numerical methods with controlled dissipation for small-scale dependent shocks, Acta Numerica, 23 (2014), 743-816.  doi: 10.1017/S0962492914000099.

[27]

C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.

[28]

C. Pars, Path-conservative numerical methods for nonconservative hyperbolic systems, In Numerical Methods for Balance Laws, volume 24 of Quad. Mat., pages 67–121. Dept. Math., Seconda Univ. Napoli, Caserta, 2009.

[29]

K. XuX. He and C. Cai, Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations, J. Comp. Phys., 227 (2008), 6779-6794.  doi: 10.1016/j.jcp.2008.03.035.

Figure 1.  Density and velocity solutions of shock tube test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 2.  Electronic and ionic temperatures of a shock tube test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 3.  Different jump relations through shocks of electronic and ionic temperatures for a shock tube test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 4.  Electric field obtained by the kinetic scheme and by Ohm's law for the Sod tube test case with identical initial temperatures
Figure 5.  Density and velocity solutions of shock tube test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 6.  Electronic and ionic temperatures of a shock tube test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 7.  Different jump relations of electronic and ionic temperatures for a shock tube test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 8.  Electric field obtained by the kinetic scheme and by Ohm's law for the Sod tube test case with different initial temperatures
Figure 9.  Density and velocity solution of a rarefaction wave test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 10.  Temperature solutions of a rarefaction wave test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 11.  Zoom on temperature solutions of a rarefaction wave test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 12.  Electric field obtained by the kinetic scheme and by Ohm's law for the double rarefaction test case
Figure 13.  Density and veloctiy solutions of a shock wave test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 14.  Electronic and ionic temperature of a shock wave test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 15.  Electronic and ionic temperature of a shock wave test case with a mass ratio of 10 with 120000 space points, 40 velocity points and a domain length of 8
Figure 16.  Electric field obtained by the kinetic scheme and by Ohm's law for the double shock test case
Figure 17.  Density and velocity solutions of shock tube test case with a mass ratio of 1000 with 100000 space points, 40 velocity points and a domain length of 8
Figure 18.  Electronic and ionic temperatures of a shock tube test case with a mass ratio of 1000 with 100000 space points, 40 velocity points and a domain length of 8
Figure 19.  Different jump relations of electronic and ionic temperatures for a shock tube test case with a mass ratio of 1000 with 100000 space points, 40 velocity points and a domain length of 8
Figure 20.  Electric field obtained by the kinetic scheme and by Ohm's law for a Sod tube test with different initial temperatures
[1]

Nicolas Crouseilles, Mohammed Lemou, SV Raghurama Rao, Ankit Ruhi, Muddu Sekhar. Asymptotic preserving scheme for a kinetic model describing incompressible fluids. Kinetic and Related Models, 2016, 9 (1) : 51-74. doi: 10.3934/krm.2016.9.51

[2]

Alina Chertock, Changhui Tan, Bokai Yan. An asymptotic preserving scheme for kinetic models with singular limit. Kinetic and Related Models, 2018, 11 (4) : 735-756. doi: 10.3934/krm.2018030

[3]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic and Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[4]

Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic and Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533

[5]

Sebastian Bauer. A non-relativistic model of plasma physics containing a radiation reaction term. Kinetic and Related Models, 2018, 11 (1) : 25-42. doi: 10.3934/krm.2018002

[6]

Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic and Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153

[7]

Young-Pil Choi, Seok-Bae Yun. A BGK kinetic model with local velocity alignment forces. Networks and Heterogeneous Media, 2020, 15 (3) : 389-404. doi: 10.3934/nhm.2020024

[8]

Stéphane Brull, Pierre Degond, Fabrice Deluzet, Alexandre Mouton. Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model. Kinetic and Related Models, 2011, 4 (4) : 991-1023. doi: 10.3934/krm.2011.4.991

[9]

Jisheng Kou, Huangxin Chen, Xiuhua Wang, Shuyu Sun. A linear, decoupled and positivity-preserving numerical scheme for an epidemic model with advection and diffusion. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021094

[10]

Florian Schneider, Jochen Kall, Graham Alldredge. A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic and Related Models, 2016, 9 (1) : 193-215. doi: 10.3934/krm.2016.9.193

[11]

Makoto Okumura, Daisuke Furihata. A structure-preserving scheme for the Allen–Cahn equation with a dynamic boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4927-4960. doi: 10.3934/dcds.2020206

[12]

Nikolaos Halidias, Ioannis S. Stamatiou. Boundary preserving explicit scheme for the Aït-Sahalia mode. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022092

[13]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic and Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[14]

Martin Seehafer. A local existence result for a plasma physics model containing a fully coupled magnetic field. Kinetic and Related Models, 2009, 2 (3) : 503-520. doi: 10.3934/krm.2009.2.503

[15]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[16]

Christian Klingenberg, Marlies Pirner, Gabriella Puppo. A consistent kinetic model for a two-component mixture with an application to plasma. Kinetic and Related Models, 2017, 10 (2) : 445-465. doi: 10.3934/krm.2017017

[17]

Charles Nguyen, Stephen Pankavich. A one-dimensional kinetic model of plasma dynamics with a transport field. Evolution Equations and Control Theory, 2014, 3 (4) : 681-698. doi: 10.3934/eect.2014.3.681

[18]

Jyoti Mishra. Analysis of the Fitzhugh Nagumo model with a new numerical scheme. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 781-795. doi: 10.3934/dcdss.2020044

[19]

Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2661-2681. doi: 10.3934/dcdsb.2021153

[20]

Michael Herty, Gabriella Puppo, Sebastiano Roncoroni, Giuseppe Visconti. The BGK approximation of kinetic models for traffic. Kinetic and Related Models, 2020, 13 (2) : 279-307. doi: 10.3934/krm.2020010

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (301)
  • HTML views (102)
  • Cited by (1)

[Back to Top]